Threat-judgment is a complicated fuzzy inference problem. Up to now no relevant unified theory and measur-ing standard have been developed. It is very difficult to establish a threat-judgment model with high reliabili...Threat-judgment is a complicated fuzzy inference problem. Up to now no relevant unified theory and measur-ing standard have been developed. It is very difficult to establish a threat-judgment model with high reliability in the airdefense system for the naval warships. Air target threat level judgment is an important component in naval warship com-bat command decision-making systems. According to the threat level judgment of air targets during the air defense of sin-gle naval warship, a fuzzy pattern recognition model for judging the threat from air targets is established. Then an algo-rithm for identifying the parameters in the model is presented. The model has an adaptive feature and can dynamicallyupdate its parameters according to the state change of the attacking targets and the environment. The method presentedhere can be used for the air defense system threat judgment in the naval warships.展开更多
The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article propose...The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).展开更多
战术级空中目标意图识别是现代化防空作战中理解战场态势、预测目标行动的关键。构建空中目标意图识别模型的核心问题是如何表示不确定的意图因素以及它们之间的关系。分析了具有典型防空作战意义的想定,并结合军事经验总结了影响意图...战术级空中目标意图识别是现代化防空作战中理解战场态势、预测目标行动的关键。构建空中目标意图识别模型的核心问题是如何表示不确定的意图因素以及它们之间的关系。分析了具有典型防空作战意义的想定,并结合军事经验总结了影响意图识别的因素。提出了应用多实体贝叶斯网络(M u lti-En tities B ayes ian N etw ork)描述空中目标意图,在贝叶斯推理中融入逻辑理论,采用具体的基于知识的SSBN构建算法动态地进行空中目标意图识别。通过仿真实验,验证了此方法的有效性和可行性。展开更多
基金This project was supported by the National Defense Foundation of China(40108070103)
文摘Threat-judgment is a complicated fuzzy inference problem. Up to now no relevant unified theory and measur-ing standard have been developed. It is very difficult to establish a threat-judgment model with high reliability in the airdefense system for the naval warships. Air target threat level judgment is an important component in naval warship com-bat command decision-making systems. According to the threat level judgment of air targets during the air defense of sin-gle naval warship, a fuzzy pattern recognition model for judging the threat from air targets is established. Then an algo-rithm for identifying the parameters in the model is presented. The model has an adaptive feature and can dynamicallyupdate its parameters according to the state change of the attacking targets and the environment. The method presentedhere can be used for the air defense system threat judgment in the naval warships.
基金supported by the National Natural Science Foundation of China(Grant No.61973037)and(Grant No.61871414)Postdoctoral Fundation of China(Grant No.2022M720419)。
文摘The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).
文摘战术级空中目标意图识别是现代化防空作战中理解战场态势、预测目标行动的关键。构建空中目标意图识别模型的核心问题是如何表示不确定的意图因素以及它们之间的关系。分析了具有典型防空作战意义的想定,并结合军事经验总结了影响意图识别的因素。提出了应用多实体贝叶斯网络(M u lti-En tities B ayes ian N etw ork)描述空中目标意图,在贝叶斯推理中融入逻辑理论,采用具体的基于知识的SSBN构建算法动态地进行空中目标意图识别。通过仿真实验,验证了此方法的有效性和可行性。