The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general red...The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general reductive method is determined. Then, the significance of dispensable attribute in the reduction-table is calculated. Finally, the minimum relative reduction set is achieved. The typical calculation and quantitative computation of reservoir parameter in oil logging show that the method of attribute reduction is greatly effective and feasible in logging interpretation.展开更多
The quantity of well logging data is increasing exponentially, hence methods of extracting the useful information or attribution from the logging database are becoming very important in logging interpretation. So, the...The quantity of well logging data is increasing exponentially, hence methods of extracting the useful information or attribution from the logging database are becoming very important in logging interpretation. So, the method of logging attribute reduction is presented based on a rough set, i.e., first determining the core of the information table, then calculating the significance of each attribute, and finally obtaining the relative reduction table. The application result shows that the method of attribute reduction is feasible and can be used for optimizing logging attributes, and decreasing redundant logging information to a great extent.展开更多
Classical rough set has a limited processing capacity in fuzzy decision table. Combining fuzzy set with classical rough set,attribute reduction algorithm on fuzzy decision table is studied. First,new similarity degree...Classical rough set has a limited processing capacity in fuzzy decision table. Combining fuzzy set with classical rough set,attribute reduction algorithm on fuzzy decision table is studied. First,new similarity degree and new similarity category are defined. In the meantime,similarity category clusters which are divided by condition attribute are provided. And then,two theorems are presented. Subsequently,a new attribute reduction algorithm is proposed. Finally,the new attribute reduction algorithm is verified through a performance evaluation decision table of the self-repairing flight-control system. The result shows the proposed attribute reduction algorithm is able to deal with fuzzy decision table to a certain extent.展开更多
Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient mi...Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient minimum attribute reduction algorithm is proposed based on the multilevel evolutionary tree with self-adaptive subpopulations.A model of multilevel evolutionary tree with self-adaptive subpopulations is constructed,and interacting attribute sets are better decomposed into subsets by the self-adaptive mechanism of elitist populations.Moreover it can self-adapt the subpopulation sizes according to the historical performance record so that interacting attribute decision variables are captured into the same grouped subpopulation,which will be extended to better performance in both quality of solution and competitive computation complexity for minimum attribute reduction.The conducted experiments show the proposed algorithm is better on both efficiency and accuracy of minimum attribute reduction than some representative algorithms.Finally the proposed algorithm is applied to magnetic resonance image(MRI)segmentation,and its stronger applicability is further demonstrated by the effective and robust segmentation results.展开更多
An aero-engine is a typically repairable and complex system and its maintenance level has a close relationship with the maintenance cost. The inaccurate measurement for the maintenance level of an aero-engine can indu...An aero-engine is a typically repairable and complex system and its maintenance level has a close relationship with the maintenance cost. The inaccurate measurement for the maintenance level of an aero-engine can induce higher overhaul maintenance costs. Variable precision rough set (VPRS) theory is used to determine the maintenance level of an aero-engine. According to the relationship between condition information and performance parameters of aero-engine modules, decision rules are established for reflecting the real condition of an aeroengine when its maintenance level needs to be determined. Finally, the CF6 engine is used as an example to illustrate the method to be effective.展开更多
Double-quantitative rough approximation,containing two types of quantitative information,indicated stronger generalization ability and more accurate data processing capacity than the single-quantitative rough approxim...Double-quantitative rough approximation,containing two types of quantitative information,indicated stronger generalization ability and more accurate data processing capacity than the single-quantitative rough approximation.In this paper,the neighborhood-based double-quantitative rough set models are firstly presented in a set-valued information system.Secondly,the attribute reduction method based on the lower approximation invariant is addressed,and the relevant algorithm for the approximation attribute reduction is provided in the set-valued information system.Finally,to illustrate the superiority and the effectiveness of the proposed reduction approach,experimental evaluation is performed using three datasets coming from the University of California-Irvine(UCI)repository.展开更多
The classical rough set can not show the fuzziness and the importance of objects in decision procedure because it uses definite form to express each object. In order to solve this problem,this paper firstly introduces...The classical rough set can not show the fuzziness and the importance of objects in decision procedure because it uses definite form to express each object. In order to solve this problem,this paper firstly introduces a special decision table in which each object has a membership degree to show its fuzziness and has been assigned a weight to show its importance in decision procedure. Then,the special decision table is studied and the relevant rough set model is provided. In the meantime,relevant definitions and theorems are proposed. On the above basis,an attribute reduction algorithm is presented. Finally,feasibility of the relevant rough set model and the presented attribute reduction algorithm are verified by an example.展开更多
Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obta...Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obtained from incomplete information systems is firstly founded.As a part of the model,the corresponding discernibility matrix and an attribute reduction of incomplete information system are then proposed.Finally,the extended rough set model and the proposed attribute reduction algorithm are verified under an incomplete information system.展开更多
基金Supported by the National Natural Science Foundation of China (No.60308002)
文摘The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general reductive method is determined. Then, the significance of dispensable attribute in the reduction-table is calculated. Finally, the minimum relative reduction set is achieved. The typical calculation and quantitative computation of reservoir parameter in oil logging show that the method of attribute reduction is greatly effective and feasible in logging interpretation.
文摘The quantity of well logging data is increasing exponentially, hence methods of extracting the useful information or attribution from the logging database are becoming very important in logging interpretation. So, the method of logging attribute reduction is presented based on a rough set, i.e., first determining the core of the information table, then calculating the significance of each attribute, and finally obtaining the relative reduction table. The application result shows that the method of attribute reduction is feasible and can be used for optimizing logging attributes, and decreasing redundant logging information to a great extent.
基金supported by the Foundation and Frontier Technologies Research Plan Projects of Henan Province of China under Grant No. 102300410266
文摘Classical rough set has a limited processing capacity in fuzzy decision table. Combining fuzzy set with classical rough set,attribute reduction algorithm on fuzzy decision table is studied. First,new similarity degree and new similarity category are defined. In the meantime,similarity category clusters which are divided by condition attribute are provided. And then,two theorems are presented. Subsequently,a new attribute reduction algorithm is proposed. Finally,the new attribute reduction algorithm is verified through a performance evaluation decision table of the self-repairing flight-control system. The result shows the proposed attribute reduction algorithm is able to deal with fuzzy decision table to a certain extent.
基金Supported by the National Natural Science Foundation of China(61139002,61171132)the Natural Science Foundation of Jiangsu Education Department(12KJB520013)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Funding of Jiangsu Innovation Program for Graduate Education(CXZZ110219)the Open Project Program of State Key Lab for Novel Software Technology in Nanjing University(KFKT2012B28)
文摘Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient minimum attribute reduction algorithm is proposed based on the multilevel evolutionary tree with self-adaptive subpopulations.A model of multilevel evolutionary tree with self-adaptive subpopulations is constructed,and interacting attribute sets are better decomposed into subsets by the self-adaptive mechanism of elitist populations.Moreover it can self-adapt the subpopulation sizes according to the historical performance record so that interacting attribute decision variables are captured into the same grouped subpopulation,which will be extended to better performance in both quality of solution and competitive computation complexity for minimum attribute reduction.The conducted experiments show the proposed algorithm is better on both efficiency and accuracy of minimum attribute reduction than some representative algorithms.Finally the proposed algorithm is applied to magnetic resonance image(MRI)segmentation,and its stronger applicability is further demonstrated by the effective and robust segmentation results.
文摘An aero-engine is a typically repairable and complex system and its maintenance level has a close relationship with the maintenance cost. The inaccurate measurement for the maintenance level of an aero-engine can induce higher overhaul maintenance costs. Variable precision rough set (VPRS) theory is used to determine the maintenance level of an aero-engine. According to the relationship between condition information and performance parameters of aero-engine modules, decision rules are established for reflecting the real condition of an aeroengine when its maintenance level needs to be determined. Finally, the CF6 engine is used as an example to illustrate the method to be effective.
基金Supported by the College Students Innovation and Entrepreneurship Training Program project(Grant No.101202010635586)National Natural Science Foundation of China(Grant No.61772002,61976245)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.SWU119063)Scientific and Technological Project of Construction of Double City Economic Circle in Chengdu-Chongqing Area(Grant No.KJCX2020009)Science and Technology Research Program of Chongqing Education Commission(Grant No.KJQN202003806)。
文摘Double-quantitative rough approximation,containing two types of quantitative information,indicated stronger generalization ability and more accurate data processing capacity than the single-quantitative rough approximation.In this paper,the neighborhood-based double-quantitative rough set models are firstly presented in a set-valued information system.Secondly,the attribute reduction method based on the lower approximation invariant is addressed,and the relevant algorithm for the approximation attribute reduction is provided in the set-valued information system.Finally,to illustrate the superiority and the effectiveness of the proposed reduction approach,experimental evaluation is performed using three datasets coming from the University of California-Irvine(UCI)repository.
基金supported by the Foundation and Frontier Technologies Research Plan Projects of Henan Province of China under Grant No. 102300410266
文摘The classical rough set can not show the fuzziness and the importance of objects in decision procedure because it uses definite form to express each object. In order to solve this problem,this paper firstly introduces a special decision table in which each object has a membership degree to show its fuzziness and has been assigned a weight to show its importance in decision procedure. Then,the special decision table is studied and the relevant rough set model is provided. In the meantime,relevant definitions and theorems are proposed. On the above basis,an attribute reduction algorithm is presented. Finally,feasibility of the relevant rough set model and the presented attribute reduction algorithm are verified by an example.
基金supported by the Foundation and Frontier Technologies Research Plan Projects of Henan Province of China under Grant No. 102300410266
文摘Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obtained from incomplete information systems is firstly founded.As a part of the model,the corresponding discernibility matrix and an attribute reduction of incomplete information system are then proposed.Finally,the extended rough set model and the proposed attribute reduction algorithm are verified under an incomplete information system.