Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with ...Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with seed shape is crucial for improving the seed and fiber quality in cotton.Results A total of 238 cotton accessions were evaluated in four different environments over a period of two years.Traits including thousand grain weight(TGW),aspect ratio(AR),seed length,seed width,diameter,and roundness demonstrated high heritability and significant genetic variation,as indicated by phenotypic analysis.The association analysis involved 145 simple sequence repeats(SSR)markers and identified 50 loci significantly associated with six traits related to seed shape.The markers MON_DPL0504aa and BNL2535ba were identified as influencing multiple traits,including aspect ratio and thousand grain weight.Notably,markers such as HAU2588a and MUSS422aa had considerable influence on seed diameter and roundness.The identified markers represented an average phenotypic variance between 3.92%for seed length and 16.54%for TGW.Conclusions The research finds key loci for seed shape-related traits in cotton,providing significant potential for marker-assisted breeding.These findings establish a framework for breeding initiatives focused on enhancing seed quality,hence advancing the cotton production.展开更多
Background Cotton is an important cash crop in China and a key component of the global textile market.Verticil-lium wilt is a major factor affecting cotton yield.Single nucleotide polymorphism(SNP)markers and phenotyp...Background Cotton is an important cash crop in China and a key component of the global textile market.Verticil-lium wilt is a major factor affecting cotton yield.Single nucleotide polymorphism(SNP)markers and phenotypic data can be used to identify genetic markers and loci associated with cotton resistance to Verticillium wilt.We used eight upland cotton parent materials in this study to construct a multiparent advanced generation inter-cross(MAGIC)population comprising 320 lines.The Verticillium wilt resistance of the MAGIC population was identified in the green-house in 2019,and the average relative disease index(ARDI)was calculated.A genome-wide association study(GWAS)was performed to discover SNP markers/genes associated with Verticillium wilt resistance.Results ARDI of the MAGIC population showed wide variation,ranging from 16.7 to 79.4 across three replicates.This variation reflected a diverse range of resistance to Verticillium wilt within the population.Analysis of distribution pat-terns across the environments revealed consistent trends,with coefficients of variation between 12.25%and 21.96%.Families with higher ARDI values,indicating stronger resistance,were more common,likely due to genetic diver-sity and environmental factors.Population structure analysis divided the MAGIC population into three subgroups,with Group I showing higher genetic variation and Groups II and III displaying more uniform resistance performance.Principal component analysis(PCA)confirmed these divisions,highlighting the genetic diversity underlying Verticil-lium wilt resistance.Through GWAS,we identified 19 SNPs significantly associated with Verticillium wilt resistance,distributed across three chromosomes.The screening of candidate genes was performed on the transcriptome derived from resistant and susceptible cultivars,combined with gene annotation and tissue expression patterns,and two key candidate genes,Ghir_A01G006660 and Ghir_A02G008980,were found to be potentially associated with Verticillium wilt resistance.This suggests that these two candidate genes may play an important role in responding to Verticillium wilt.Conclusion This study aims to dissect the genetic basis of Verticillium wilt resistance in cotton by using a MAGIC population and GWAS.The study seeks to provide valuable genetic resources for marker-assisted breeding and enhance the understanding of resistance mechanisms to improve cotton resilience against Verticillium wilt.展开更多
Most important agricultural traits of crops are controlled by many genes. These traits have complicated genetic basis and are difficult for genetic analysis. Due to application of molecular marker techniques in the la...Most important agricultural traits of crops are controlled by many genes. These traits have complicated genetic basis and are difficult for genetic analysis. Due to application of molecular marker techniques in the last two decades, genetic and molecular dissection of quantitative traits has become possible. In this paper, recent progress on mapping of quantitative trait loci in crops was reviewed.展开更多
Background:Cotton is the source of natural fibers globally,fulfilling 90%of the textile industry’s requirements.However,fiber development is a complex biological process comprising four stages.Fiber develops from a s...Background:Cotton is the source of natural fibers globally,fulfilling 90%of the textile industry’s requirements.However,fiber development is a complex biological process comprising four stages.Fiber develops from a single cell,and cell elongation is a vital process in fiber development.Therefore,it is pertinent to understand and exploit mechanisms underlying cell elongation during fiber development.A previous report about cell division control protein 42(CDC-42)with its key role in cell elongation in eukaryotes inspired us to explore its homologs Rho GTPases for understanding of cell elongation during cotton fiber development.Result:We classified 2066 Rho proteins from 8 Gossypium species into 5 and 8 groups within A and D sub-genomes,respectively.Asymmetric evolution of Rho members was observed among five tetraploids.Population fixation statistics between two short and long fiber genotypes identified highly diverged regions encompassing 34 Rho genes in G.hirustum,and 31 of them were retained through further validation by genome wide association analysis(GWAS).Moreover,a weighted gene co-expression network characterized genome-wide expression patteren of Rho genes based on previously published transcriptome data.Twenty Rho genes from five modules were identified as hub genes which were potentially related to fiber development.Interaction networks of 5 Rho genes based on transcriptional abundance and gene ontology(GO)enrichment emphasized the involvement of Rho in cell wall biosynthesis,fatty acid elongation,and other biological processes.Conclusion:Our study characterized the Rho proteins in cotton,provided insights into the cell elongation of cotton fiber and potential application in cotton fiber improvement.展开更多
基金supported by the Fund for BTNYGG(NYHXGG,2023AA102)the National Natural Science Foundation of China(32260510)+3 种基金the Key Project for Science,Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)Shihezi University high-level talent research project(RCZK202337)Science and Technology Major Project of the Department of Science and Technology of Xinjiang Uygur Autonomous region(2022A03004-1)the Key Programs for Science and Technology Development in Agricultural Field of Xinjiang Production and Construction Corps。
文摘Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with seed shape is crucial for improving the seed and fiber quality in cotton.Results A total of 238 cotton accessions were evaluated in four different environments over a period of two years.Traits including thousand grain weight(TGW),aspect ratio(AR),seed length,seed width,diameter,and roundness demonstrated high heritability and significant genetic variation,as indicated by phenotypic analysis.The association analysis involved 145 simple sequence repeats(SSR)markers and identified 50 loci significantly associated with six traits related to seed shape.The markers MON_DPL0504aa and BNL2535ba were identified as influencing multiple traits,including aspect ratio and thousand grain weight.Notably,markers such as HAU2588a and MUSS422aa had considerable influence on seed diameter and roundness.The identified markers represented an average phenotypic variance between 3.92%for seed length and 16.54%for TGW.Conclusions The research finds key loci for seed shape-related traits in cotton,providing significant potential for marker-assisted breeding.These findings establish a framework for breeding initiatives focused on enhancing seed quality,hence advancing the cotton production.
基金supported by funding from the fund for National Key Research and Development Program of China(2023YFD2301203-05)National Natural Science Foundation of China(32260510)+3 种基金Special Financial Project for Seed Industry Development in the Autonomous Region(BNZJ2024-10,BNZJ2024-30)Key Project for Science and Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)Shihezi University high-level talent research project(RCZK202337)Science and Technol-ogy Planning of Shuanghe city,Xinjiang Production and Construction Crops(2021NY02).
文摘Background Cotton is an important cash crop in China and a key component of the global textile market.Verticil-lium wilt is a major factor affecting cotton yield.Single nucleotide polymorphism(SNP)markers and phenotypic data can be used to identify genetic markers and loci associated with cotton resistance to Verticillium wilt.We used eight upland cotton parent materials in this study to construct a multiparent advanced generation inter-cross(MAGIC)population comprising 320 lines.The Verticillium wilt resistance of the MAGIC population was identified in the green-house in 2019,and the average relative disease index(ARDI)was calculated.A genome-wide association study(GWAS)was performed to discover SNP markers/genes associated with Verticillium wilt resistance.Results ARDI of the MAGIC population showed wide variation,ranging from 16.7 to 79.4 across three replicates.This variation reflected a diverse range of resistance to Verticillium wilt within the population.Analysis of distribution pat-terns across the environments revealed consistent trends,with coefficients of variation between 12.25%and 21.96%.Families with higher ARDI values,indicating stronger resistance,were more common,likely due to genetic diver-sity and environmental factors.Population structure analysis divided the MAGIC population into three subgroups,with Group I showing higher genetic variation and Groups II and III displaying more uniform resistance performance.Principal component analysis(PCA)confirmed these divisions,highlighting the genetic diversity underlying Verticil-lium wilt resistance.Through GWAS,we identified 19 SNPs significantly associated with Verticillium wilt resistance,distributed across three chromosomes.The screening of candidate genes was performed on the transcriptome derived from resistant and susceptible cultivars,combined with gene annotation and tissue expression patterns,and two key candidate genes,Ghir_A01G006660 and Ghir_A02G008980,were found to be potentially associated with Verticillium wilt resistance.This suggests that these two candidate genes may play an important role in responding to Verticillium wilt.Conclusion This study aims to dissect the genetic basis of Verticillium wilt resistance in cotton by using a MAGIC population and GWAS.The study seeks to provide valuable genetic resources for marker-assisted breeding and enhance the understanding of resistance mechanisms to improve cotton resilience against Verticillium wilt.
文摘Most important agricultural traits of crops are controlled by many genes. These traits have complicated genetic basis and are difficult for genetic analysis. Due to application of molecular marker techniques in the last two decades, genetic and molecular dissection of quantitative traits has become possible. In this paper, recent progress on mapping of quantitative trait loci in crops was reviewed.
基金supported by Funds of the National Key Research and Development Program(2016YFD0101006,2018YFD0100402)National Natural Science Foundation of China(31621005 and 31901581)Central Public-interest Scientific Institution Basal Research Fund(1610162021013).
文摘Background:Cotton is the source of natural fibers globally,fulfilling 90%of the textile industry’s requirements.However,fiber development is a complex biological process comprising four stages.Fiber develops from a single cell,and cell elongation is a vital process in fiber development.Therefore,it is pertinent to understand and exploit mechanisms underlying cell elongation during fiber development.A previous report about cell division control protein 42(CDC-42)with its key role in cell elongation in eukaryotes inspired us to explore its homologs Rho GTPases for understanding of cell elongation during cotton fiber development.Result:We classified 2066 Rho proteins from 8 Gossypium species into 5 and 8 groups within A and D sub-genomes,respectively.Asymmetric evolution of Rho members was observed among five tetraploids.Population fixation statistics between two short and long fiber genotypes identified highly diverged regions encompassing 34 Rho genes in G.hirustum,and 31 of them were retained through further validation by genome wide association analysis(GWAS).Moreover,a weighted gene co-expression network characterized genome-wide expression patteren of Rho genes based on previously published transcriptome data.Twenty Rho genes from five modules were identified as hub genes which were potentially related to fiber development.Interaction networks of 5 Rho genes based on transcriptional abundance and gene ontology(GO)enrichment emphasized the involvement of Rho in cell wall biosynthesis,fatty acid elongation,and other biological processes.Conclusion:Our study characterized the Rho proteins in cotton,provided insights into the cell elongation of cotton fiber and potential application in cotton fiber improvement.