During architectural conception phase,building maintenance problematic is mostly a result of the unintentional use of preconceived architectonical solutions rather than a consequence of a specific influence of mainten...During architectural conception phase,building maintenance problematic is mostly a result of the unintentional use of preconceived architectonical solutions rather than a consequence of a specific influence of maintenance requirements.Hardly the architect in the act of design understands the importance of these solutions in the service life span of a building.Being aware of this,is it possible for the architect to be supplied with a decision support system that allows him to consider the implications of building maintenance since the early design phases? Having awareness of this problem and its consequences in the early design phases a research project was started at the Faculty Engineering of the University of Oporto(FEUP),under which the implications of building maintenance in the act of architectural design is studied.This article presents the methodology developed to identify the needs of maintenance of buildings based on a DSS-decision support system that provides simple tools the architect can use in design phase.This methodology is based on decomposition of building parts-Elements Source of Maintenance ESM-,and subsequently,a set of functional requirements that determine the performance regarding building maintenance on account of architectural decisions.Relevant maintenance actions are defined: Inspection,Pro-action,Cleaning,Correction,Replacement,Legal enforcement,Limits of use.One can thus set up a relationship between the act of design and its performance framework based on behavior,intervention and the ownership of the work of architecture.Using a Multicriteria Analysis(MCA) a qualitative evaluation of different options based on maintenance requirements accomplishment.Conclusions on the importance of architectural conception concerning the building maintenance were clearly arrived at and the utility of the developed decision support tool was also highlighted.展开更多
The ubiquitous power Internet of Things(UPIoT)is an intelligent service system with comprehensive state perception,efficient processing,and flexible application of information.It focuses on each link of the power syst...The ubiquitous power Internet of Things(UPIoT)is an intelligent service system with comprehensive state perception,efficient processing,and flexible application of information.It focuses on each link of the power system and makes full use of the mobile internet,artificial intelligence,and other advanced information and communication technologies in order to realize the inter-human interaction of all things in all links of the power system.This article systematically presents to the national and international organizations and agencies in charge of UPIoT layer standardization the status quo of the research on the Internet of Things(IoT)-related industry standards system.It briefly describes the generic standard classification methods,layered architecture,conceptual model,and system tables in the UPIoT application layer.Based on the principles of inheritance,innovation,and practicability,this study divides the application layer into customer service,power grid operation,integrated energy,and enterprise operation,emerging business and analyzes the standard requirements of these five fields.This study also proposes a standard plan.Finally,it summarizes the research report and provides suggestions for a follow-up work.展开更多
The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of light...The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices,but there are remaining unprecedented challenges.Herein,the self-assembly VS_(4)/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.The microarchitecture and heterointerface of VS_(4)/rGO heterostructure can be regulated by the generation of VS_(4) nanorods anchored on rGO,which can effectively modulate the impedance matching and attenuation constant.The maximum reflection loss of 2VS_(4)/rGO40 heterostructure can reach−43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187,respectively.The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm.The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations.Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization,interfacial polarization,and multiple reflections and scatterings of microwaves.Overall,the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.展开更多
文摘During architectural conception phase,building maintenance problematic is mostly a result of the unintentional use of preconceived architectonical solutions rather than a consequence of a specific influence of maintenance requirements.Hardly the architect in the act of design understands the importance of these solutions in the service life span of a building.Being aware of this,is it possible for the architect to be supplied with a decision support system that allows him to consider the implications of building maintenance since the early design phases? Having awareness of this problem and its consequences in the early design phases a research project was started at the Faculty Engineering of the University of Oporto(FEUP),under which the implications of building maintenance in the act of architectural design is studied.This article presents the methodology developed to identify the needs of maintenance of buildings based on a DSS-decision support system that provides simple tools the architect can use in design phase.This methodology is based on decomposition of building parts-Elements Source of Maintenance ESM-,and subsequently,a set of functional requirements that determine the performance regarding building maintenance on account of architectural decisions.Relevant maintenance actions are defined: Inspection,Pro-action,Cleaning,Correction,Replacement,Legal enforcement,Limits of use.One can thus set up a relationship between the act of design and its performance framework based on behavior,intervention and the ownership of the work of architecture.Using a Multicriteria Analysis(MCA) a qualitative evaluation of different options based on maintenance requirements accomplishment.Conclusions on the importance of architectural conception concerning the building maintenance were clearly arrived at and the utility of the developed decision support tool was also highlighted.
基金supported by Science and Technology Foundation of State Grid Corporation of China(Ubiquitous Power Internet of Things Technical Standard System)5442HL 190008National Key Research and Development Program of China(2020YFB0905900)。
文摘The ubiquitous power Internet of Things(UPIoT)is an intelligent service system with comprehensive state perception,efficient processing,and flexible application of information.It focuses on each link of the power system and makes full use of the mobile internet,artificial intelligence,and other advanced information and communication technologies in order to realize the inter-human interaction of all things in all links of the power system.This article systematically presents to the national and international organizations and agencies in charge of UPIoT layer standardization the status quo of the research on the Internet of Things(IoT)-related industry standards system.It briefly describes the generic standard classification methods,layered architecture,conceptual model,and system tables in the UPIoT application layer.Based on the principles of inheritance,innovation,and practicability,this study divides the application layer into customer service,power grid operation,integrated energy,and enterprise operation,emerging business and analyzes the standard requirements of these five fields.This study also proposes a standard plan.Finally,it summarizes the research report and provides suggestions for a follow-up work.
基金supported by the National Key Research and Development Program of China(Nos.2018YFA0703500)the National Natural Science Foundation of China(Nos.52188101,52102153,52072029,51991340,51991342,51972022)+1 种基金the Overseas Expertise Introduction Projects for Discipline Innovation(B14003)the Fundamental Research Funds for Central Universities(FRF-TP-18-001C1).
文摘The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices,but there are remaining unprecedented challenges.Herein,the self-assembly VS_(4)/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.The microarchitecture and heterointerface of VS_(4)/rGO heterostructure can be regulated by the generation of VS_(4) nanorods anchored on rGO,which can effectively modulate the impedance matching and attenuation constant.The maximum reflection loss of 2VS_(4)/rGO40 heterostructure can reach−43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187,respectively.The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm.The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations.Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization,interfacial polarization,and multiple reflections and scatterings of microwaves.Overall,the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.