For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial...For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.展开更多
We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponen...We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.展开更多
The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave...The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.展开更多
In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and the...In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.展开更多
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in...Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.展开更多
This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain...This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies.展开更多
The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0....The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0.5 to 100 mm/min.Based on the stress−strain curves and the dynamic material model,the hot processing map was established,which demonstrates that the power dissipation factor(η)is the most sensitive to strain rate at 400℃via absorption of dislocations.At 400℃,sample at 0.5 mm/min possessesηof 0.89 because of its lower kernel average misorientation(KAM)value of 0.51,while sample at 100 mm/min possessesηof 0.46 with a higher KAM value of 1.147.In addition,the flow stress presents a slight decrease of 25.94 MPa at 10 mm/min compared to that at 100 mm/min and 100℃.The reasons are twofold:a special~34°texture component during 100℃-100 mm/min favoring the activation of basal slip,and dynamic recrystallization(DRX)also providing softening effect to some extent by absorbing dislocations.Difference in activation of basal slip among twin laminas during 100℃-100 mm/min results in deformation inhomogeneity within the grains,which generates stress that helps matrix grains tilt to a direction favorable to basal slip,forming the special~34°texture component.展开更多
Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate fail...Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate failure modes,and to analyze the correlation between the strain rate,temperature,peak strength,and ultimate failure modes.The results show that the mass decreases with the increase of treatment temperature,and the pattern of the stress−strain curves is not impacted by the increase of impact velocity.Under a fixed temperature,the higher the impact velocity,the higher the strain rate and dynamical compression strength,indicating a strain rate hardening effect for red sandstone.With an increasing treatment temperature,the strain rate gradually increases when the impact loading remains unchanged,suggesting a rise in the deformability of red sandstone under high-temperature environment.Raise in both impact velocity and treatment temperature leads to an intensification of the damage features of the red sandstone.Similarly,higher strain rates lead to the intensification of the final damage mode of red sandstone regardless of the change in treatment temperature.Moreover,a dynamic damage constitutive model that considers the impacts of strain rate and temperature is proposed based on experimental results.展开更多
Dynamic disturbances certainly reduce shear strength of rock joints,yet the mechanism needs deeper explanation.We investigate the shear behavior of a rough basalt joint by conducting laboratory shear experiments.Const...Dynamic disturbances certainly reduce shear strength of rock joints,yet the mechanism needs deeper explanation.We investigate the shear behavior of a rough basalt joint by conducting laboratory shear experiments.Constant and superimposed oscillating normal loads are applied at the upper block.Meanwhile,the bottom block moves at a constant shear rate.We investigate the shear behavior by:1)altering the normal load oscillation frequency with a same shear rate,2)altering the shear rate with a same normal load oscillation frequency,and 3)altering the normal load oscillation frequency and shear rate simultaneously with a constant ratio.The results show that the oscillating normal load reduces the coefficient of friction(COF).The reduce degree of COF increases with higher shear rate,decreases when increasing normal load oscillation frequency,and keeps constant if the special ratio,v/f(shear rate divided by normal oscillation frequency),is constant.Moreover,we identify a time lag between peak normal load and peak shear load.And the lagging proportion increases with higher shear rate,and decreases with larger static COF.Our results imply that a lower creep rate with a higher normal load oscillation frequency easily destabilizes the creeping fault zones.展开更多
Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive r...Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy ...The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling.展开更多
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ...In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.展开更多
Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as ...Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.展开更多
Color,classified as warm and cool colors,impacts consumers’product selection.How the warm and cool di-mensions of colors in polychromatic pictures impact consumers’behavior in e-commerce platforms remains unexplored...Color,classified as warm and cool colors,impacts consumers’product selection.How the warm and cool di-mensions of colors in polychromatic pictures impact consumers’behavior in e-commerce platforms remains unexplored.This research examines the influences of warm and cool color combinations on consumers’liking using polychromatic stimuli in a digital reading context using empirical evidence from over 200000 exposures to 423 books.As a result,warm and cool colors(vs.neutral colors)can enhance the click-through rate,and the romance theme of novels can enhance the positive effect to consumers of warm colors(vs.neutral colors).This research extends the findings using monochromatic stimuli and indicates a theme-based visual-product attribute congruence that enhances consumers’trial-reading choice on the digital reading platform.展开更多
基金Supported by Projects from Chongqing Municipal Science and Technology Commission(CSTB2022NSCQ-MSX0445)。
文摘For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.
基金supported by the National Natural Science Foundation of China(Grant No.11971486)。
文摘We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.
基金Supported by the Short-wave Infrared Camera Systems(B025F40622024)。
文摘The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.
基金supported by the National Natural Science Foundation of China(Grant No.12301603).
文摘In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.
基金the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 101034425 for the project titled A2M2TECHThe Scientific and Technological Research Council of Türkiye (TUBITAK) with grant No 120C158 for the same A2M2TECH project under the TUBITAK's 2236/B program
文摘Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.
基金Project(52174069) supported by the National Natural Science Foundation of ChinaProject(8202033) supported by the Beijing Natural Science Foundation,ChinaProject(KCF2203) supported by the Henan Key Laboratory for Green and Efficient Mining&Comprehensive Utilization of Mineral Resources (Henan Polytechnic University),China。
文摘This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies.
基金Project(52005362) supported by the National Natural Science Foundation of ChinaProjects(202303021221005,202303021211045) supported by the Natural Science Foundation of Shanxi Province,China+1 种基金Project(202402003) supported by the Patent Commercialization Program of Shanxi Province,ChinaProject supported by the Key Research and Development Plan of Xinzhou City,China。
文摘The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0.5 to 100 mm/min.Based on the stress−strain curves and the dynamic material model,the hot processing map was established,which demonstrates that the power dissipation factor(η)is the most sensitive to strain rate at 400℃via absorption of dislocations.At 400℃,sample at 0.5 mm/min possessesηof 0.89 because of its lower kernel average misorientation(KAM)value of 0.51,while sample at 100 mm/min possessesηof 0.46 with a higher KAM value of 1.147.In addition,the flow stress presents a slight decrease of 25.94 MPa at 10 mm/min compared to that at 100 mm/min and 100℃.The reasons are twofold:a special~34°texture component during 100℃-100 mm/min favoring the activation of basal slip,and dynamic recrystallization(DRX)also providing softening effect to some extent by absorbing dislocations.Difference in activation of basal slip among twin laminas during 100℃-100 mm/min results in deformation inhomogeneity within the grains,which generates stress that helps matrix grains tilt to a direction favorable to basal slip,forming the special~34°texture component.
基金Project(BZ2024023)supported by the Jiangsu Province International Collaboration Program-Key National Industrial Technology Research and Development Cooperation,China。
文摘Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate failure modes,and to analyze the correlation between the strain rate,temperature,peak strength,and ultimate failure modes.The results show that the mass decreases with the increase of treatment temperature,and the pattern of the stress−strain curves is not impacted by the increase of impact velocity.Under a fixed temperature,the higher the impact velocity,the higher the strain rate and dynamical compression strength,indicating a strain rate hardening effect for red sandstone.With an increasing treatment temperature,the strain rate gradually increases when the impact loading remains unchanged,suggesting a rise in the deformability of red sandstone under high-temperature environment.Raise in both impact velocity and treatment temperature leads to an intensification of the damage features of the red sandstone.Similarly,higher strain rates lead to the intensification of the final damage mode of red sandstone regardless of the change in treatment temperature.Moreover,a dynamic damage constitutive model that considers the impacts of strain rate and temperature is proposed based on experimental results.
基金Project(52474122)supported by the National Natural Science Foundation of ChinaProject(HSR202105)supported by the National Engineering Laboratory for High-speed Railway Construction,China+1 种基金Project(2025B1515020067)supported by the Natural Science Foundation of Guangdong Province of ChinaProject(2022A1515240009)supported by the Natural Science Foundation of Guangdong Province,China。
文摘Dynamic disturbances certainly reduce shear strength of rock joints,yet the mechanism needs deeper explanation.We investigate the shear behavior of a rough basalt joint by conducting laboratory shear experiments.Constant and superimposed oscillating normal loads are applied at the upper block.Meanwhile,the bottom block moves at a constant shear rate.We investigate the shear behavior by:1)altering the normal load oscillation frequency with a same shear rate,2)altering the shear rate with a same normal load oscillation frequency,and 3)altering the normal load oscillation frequency and shear rate simultaneously with a constant ratio.The results show that the oscillating normal load reduces the coefficient of friction(COF).The reduce degree of COF increases with higher shear rate,decreases when increasing normal load oscillation frequency,and keeps constant if the special ratio,v/f(shear rate divided by normal oscillation frequency),is constant.Moreover,we identify a time lag between peak normal load and peak shear load.And the lagging proportion increases with higher shear rate,and decreases with larger static COF.Our results imply that a lower creep rate with a higher normal load oscillation frequency easily destabilizes the creeping fault zones.
基金Projects(52378392,52478390)supported by the National Natural Science Foundation of ChinaProject(2024J08213)supported by the Natural Science Foundation of Fujian Province,China+1 种基金Project(00387088)supported by the“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province,ChinaProject(GY-Z23072)supported by the Scientific Research Foundation of Fujian University of Technology,China。
文摘Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金Project(202302AB080024)supported by the Major Science and Technology Projects of the Science and Technology Department of Yunnan Province,ChinaProject(U21A20130)supported by the National Natural Science Foundation of China。
文摘The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling.
基金Project(2021GK1040)supported by the Major Projects of Scientific and Technology Innovation of Hunan Province,ChinaProject(52375398)supported by the National Natural Science Foundation of China。
文摘In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.
基金the National Basic Research Development of China(2011CB936003)the National Natural Science Foundation of China(50971116)。
文摘Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.
基金supported by the National Natural Science Foundation of China(72072169).
文摘Color,classified as warm and cool colors,impacts consumers’product selection.How the warm and cool di-mensions of colors in polychromatic pictures impact consumers’behavior in e-commerce platforms remains unexplored.This research examines the influences of warm and cool color combinations on consumers’liking using polychromatic stimuli in a digital reading context using empirical evidence from over 200000 exposures to 423 books.As a result,warm and cool colors(vs.neutral colors)can enhance the click-through rate,and the romance theme of novels can enhance the positive effect to consumers of warm colors(vs.neutral colors).This research extends the findings using monochromatic stimuli and indicates a theme-based visual-product attribute congruence that enhances consumers’trial-reading choice on the digital reading platform.