期刊文献+
共找到195篇文章
< 1 2 10 >
每页显示 20 50 100
Bayesian-based ant colony optimization algorithm for edge detection
1
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(aco) Bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Solving algorithm for TA optimization model based on ACO-SA 被引量:4
2
作者 Jun Wang Xiaoguang Gao Yongwen Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期628-639,共12页
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi... An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat. 展开更多
关键词 target assignment (TA) optimization ant colony optimization (aco algorithm simulated annealing (SA) algorithm hybrid optimization strategy.
在线阅读 下载PDF
Efficiency improvement of ant colony optimization in solving the moderate LTSP 被引量:1
3
作者 Munan Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1301-1309,共9页
In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and sa... In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO. 展开更多
关键词 ant colony optimization (aco travelling salesmanproblem (TSP) time-complexity of algorithm pheromone-trail up-dating.
在线阅读 下载PDF
Research of Rural Power Network Reactive Power Optimization Based on Improved ACOA
4
作者 YU Qian ZHAO Yulin WANG Xintao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第3期48-52,共5页
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud... In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable. 展开更多
关键词 rural power network reactive power optimization ant colony optimization algorithm local search strategy pheromone mutation and re-initialization strategy
在线阅读 下载PDF
基于ACO-USK优化VMD参数的滚动轴承故障诊断研究 被引量:1
5
作者 张卫国 王紫阳 +1 位作者 夏立成 陈永和 《中国工程机械学报》 北大核心 2024年第5期695-700,共6页
传统变分模态分解(VMD)技术需要人为主观预设模态分解个数K和二次惩罚因子α,由此可能导致信号的欠分解、过分解、模态混叠或信息丢失等问题,从而影响对滚动轴承早期故障信号的分解效果。本文根据峭度指标对滚动轴承早期故障异常敏感的... 传统变分模态分解(VMD)技术需要人为主观预设模态分解个数K和二次惩罚因子α,由此可能导致信号的欠分解、过分解、模态混叠或信息丢失等问题,从而影响对滚动轴承早期故障信号的分解效果。本文根据峭度指标对滚动轴承早期故障异常敏感的特点,提出了一种以联合平方峭度(USK)指标为目标函数,结合蚁群优化(ACO)算法的ACO-USK优化方法,对VMD模态分解个数K和二次惩罚因子α进行自适应寻优。研究结果表明:对于滚动轴承早期故障信号,与以包络熵(EE)为目标函数的VMD优化方法对比,本文提出的方法既具有较好的包络谱信噪比(SNRES),又有在计算用时上的优越性,具有一定的工程应用价值。 展开更多
关键词 变分模态分解(VMD) 滚动轴承 故障诊断 联合平方峭度(USK) 蚁群优化(aco)算法
在线阅读 下载PDF
基于Dijkstra-ACO混合算法的煤矿井下应急逃生路径动态规划
6
作者 卢国菊 史文芳 《工矿自动化》 CSCD 北大核心 2024年第10期147-151,178,共6页
煤矿井下应急逃生路径规划需要根据煤矿井下环境的变化及时调整,但传统方法依赖静态网络和固定权重而无法实现逃生路径规划适应井下环境动态变化。针对上述问题,提出了一种基于Dijkstra-ACO(蚁群优化)混合算法的煤矿井下应急逃生路径动... 煤矿井下应急逃生路径规划需要根据煤矿井下环境的变化及时调整,但传统方法依赖静态网络和固定权重而无法实现逃生路径规划适应井下环境动态变化。针对上述问题,提出了一种基于Dijkstra-ACO(蚁群优化)混合算法的煤矿井下应急逃生路径动态规划方法。基于巷道坡度和水位对逃生的影响分析,建立了煤矿井下应急逃生最优路径动态规划模型,实现逃生路径随巷道坡度、水位等环境变化而实时调整,从而提高逃生效率和安全性。采用Dijkstra-ACO混合算法求解煤矿井下应急逃生最优路径动态规划模型,即利用Dijkstra算法快速确定初始路径,引入ACO算法寻找距离最短且安全性最高的逃生路径,实现规划路径能够适应环境变化。搭建了模拟某煤矿多种巷道类型及其坡度、水位等参数的仿真环境,开展了应急逃生路径动态规划实验。结果表明,在50 m×100 m,100 m×200 m,150 m×250 m 3种不同尺寸的测试区域中,基于Dijkstra-ACO混合算法规划的路径长度比基于A^(*)算法和基于改进蚁群算法规划的路径长度缩短了19%以上,同时避障率提高了5%以上。 展开更多
关键词 煤矿井下应急逃生 路径动态规划 Dijkstra-aco混合算法 蚁群优化算法
在线阅读 下载PDF
融合概率地图法的改进蚁群优化算法无人水面船路径规划
7
作者 白响恩 刘迪 徐笑锋 《上海海事大学学报》 北大核心 2025年第2期1-8,共8页
针对传统蚁群优化(ant colony optimization,ACO)算法存在收敛速度慢、易陷入局部最优等缺陷,对传统ACO算法进行改进,使其适用于无人水面船(unmanned surface vehicle,USV)在复杂和真实海域环境下的全局路径规划。利用概率地图法(probab... 针对传统蚁群优化(ant colony optimization,ACO)算法存在收敛速度慢、易陷入局部最优等缺陷,对传统ACO算法进行改进,使其适用于无人水面船(unmanned surface vehicle,USV)在复杂和真实海域环境下的全局路径规划。利用概率地图法(probabilistic roadmap method,PRM)规划的路径作为ACO算法初始信息素分布的依据,提高算法收敛速度;设计同时考虑路径长度和方向性的启发函数,避免传统ACO算法陷入局部最优;加入转角启发函数,减少传统ACO算法拐点数;引入障碍物密度启发函数,提高传统ACO算法规划路径时感知障碍物的能力;利用三次B样条曲线对规划的路径进一步优化,提高路径的平滑性。仿真实验表明:在不同规模的栅格地图上和真实海域环境下,改进ACO算法在拐点数和迭代次数上具有明显优势,且稳定性较好。所提出的改进ACO算法在航海实际应用中具有重要意义。 展开更多
关键词 无人水面船(USV) 路径规划 蚁群优化(aco)算法 概率地图法 真实海域
在线阅读 下载PDF
基于改进RRT与GA的多目标路径规划——以无人机林区巡检为例 被引量:3
8
作者 张彪 康峰 许舒婷 《北京林业大学学报》 北大核心 2025年第4期129-141,共13页
【目的】为解决无人机在人工林区巡检任务(如病虫害监测、火灾预防等)中的路径规划问题,即求解巡检点的最优遍历序列以及生成避障飞行轨迹,本文通过融合改进快速随机扩展树(RRT)算法和遗传算法(GA),提出一种多目标路径规划算法。【方法... 【目的】为解决无人机在人工林区巡检任务(如病虫害监测、火灾预防等)中的路径规划问题,即求解巡检点的最优遍历序列以及生成避障飞行轨迹,本文通过融合改进快速随机扩展树(RRT)算法和遗传算法(GA),提出一种多目标路径规划算法。【方法】首先改进传统GA,使其能够在三维空间中遍历所有巡检点并求解最优序列。其次,依据该序列进行路径搜索,改进RRT算法的随机采样原理,通过靶心和绕树策略实现避障效果,并采用连续选择父节点策略,取消因避障产生的多余转折点。最后,通过3次B样条曲线优化,生成最终路径。【结果】仿真结果表明,本算法能够在复杂林区环境中遍历所有巡检点,并在短时间内规划出高质量、无碰撞的路径。与粒子群算法(PSO)、蚁群算法(ACO)和RRT算法相比,当巡检点从3个增加到9个时,PSO、ACO、RRT算法搜索时间分别增加了221.77%、332.42%、184.78%,而本算法仅增加了102.35%。在9个巡检点的复杂环境中,本算法的路径耗散分别比PSO、ACO和RRT算法降低了14.46%、30.28%、24.76%,且路径质量显著提高,消除了路径交叉重合现象。此外,通过ROS平台,利用无人机在林区点云上进行模拟飞行并验证成功,证明本算法适用于林区巡检的多目标路径规划。【结论】针对人工林区无人机巡检任务中的飞行路线规划问题,本文通过改进RRT与GA,成功规划出一条遍历所有巡检点且避开林区障碍物的无碰撞路径。相较于PSO、ACO和RRT算法,本算法在路径质量、路径耗散和搜索时间上均表现出显著优势。 展开更多
关键词 多目标优化 路径规划 快速随机扩展树(RRT) 遗传算法(GA) 无人机 粒子群算法(PSO) 蚁群算法(aco)
在线阅读 下载PDF
一种基于ACO的K-medoids聚类算法 被引量:9
9
作者 孟颖 罗可 +1 位作者 姚丽娟 王琳 《计算机工程与应用》 CSCD 2012年第16期136-139,152,共5页
K-medoids算法作为聚类算法的一种,不易受极端数据的影响,适应性广泛,但是K-medoids聚类算法的精确度不稳定,平均准确率较低,用于实际的聚类分析时效果较差。ACO是一种仿生优化算法,其具有很强的健壮性,容易与其他方法相结合,求解效率... K-medoids算法作为聚类算法的一种,不易受极端数据的影响,适应性广泛,但是K-medoids聚类算法的精确度不稳定,平均准确率较低,用于实际的聚类分析时效果较差。ACO是一种仿生优化算法,其具有很强的健壮性,容易与其他方法相结合,求解效率高等特点。在K-medoids聚类算法的基础上,借鉴ACO算法的优点,提出了一种新的聚类算法,它提高了聚类的准确率,算法的稳定性也比较高。通过仿真实验,验证了算法的可行性和先进性。 展开更多
关键词 蚁群优化算法(aco) 聚类分析 K-medoids算法
在线阅读 下载PDF
基于ACO-LSSVM的网络流量预测 被引量:12
10
作者 田海梅 黄楠 《计算机工程与应用》 CSCD 2014年第1期91-95,共5页
为了提高了网络流量的预测精度,提出一种蚁群算法(ACO)优化最小二乘支持向量机(LSSVM)参数的网络流量预测算法(ACO-LSSVM)。将LSSVM算法参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,并在最优蚂... 为了提高了网络流量的预测精度,提出一种蚁群算法(ACO)优化最小二乘支持向量机(LSSVM)参数的网络流量预测算法(ACO-LSSVM)。将LSSVM算法参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,并在最优蚂蚁邻域内进行小步长局部搜索,找到算法的最优参数,建立了基于ACO-LSSVM的网络流量预测模型。仿真结果表明,相对其他网络流量预测算法,ACO-LSSVM算法提高了网络流量预测精度,更能准确地描述网络流量变化规律。 展开更多
关键词 网络流量 蚁群优化算法 最小二乘支持向量机 预测 Least SQUARE Support Vector Machine(LSSVM)
在线阅读 下载PDF
基于多蚁群的并行ACO算法 被引量:6
11
作者 夏鸿斌 须文波 刘渊 《计算机工程》 CAS CSCD 北大核心 2009年第22期23-25,28,共4页
通过改变蚁群优化(ACO)算法行为,提出一种新的ACO并行化策略——并行多蚁群ACO算法。针对蚁群算法存在停滞现象的缺点,改进选择策略,实现具有自适应并行机制的选择和搜索策略,以加强其全局搜索能力。并行处理采用数据并行的手段,能减少... 通过改变蚁群优化(ACO)算法行为,提出一种新的ACO并行化策略——并行多蚁群ACO算法。针对蚁群算法存在停滞现象的缺点,改进选择策略,实现具有自适应并行机制的选择和搜索策略,以加强其全局搜索能力。并行处理采用数据并行的手段,能减少处理器间的通信时间并获得更好的解。以对称TSP测试集为对象进行比较实验,结果表明,该算法相对于串行算法及现有的并行算法具有一定的优势。 展开更多
关键词 蚁群优化 并行策略 多蚁群
在线阅读 下载PDF
室内环境下基于最优路径规划的PSO-ACO融合算法 被引量:7
12
作者 刘俊 徐平平 +1 位作者 武贵路 彭杰 《计算机科学》 CSCD 北大核心 2018年第B11期97-100,共4页
为了使移动机器人在室内障碍物环境下寻找到达指定目的地的最优路径,提出了一种基于粒子群算法(PSO)和蚁群算法(ACO)的改进路径规划的PSO-ACO融合算法。PSO-ACO融合算法针对粒子群算法中粒子容易早熟引起的局部最优问题,采用蚁群算法获... 为了使移动机器人在室内障碍物环境下寻找到达指定目的地的最优路径,提出了一种基于粒子群算法(PSO)和蚁群算法(ACO)的改进路径规划的PSO-ACO融合算法。PSO-ACO融合算法针对粒子群算法中粒子容易早熟引起的局部最优问题,采用蚁群算法获得全局最优解;同时有效地解决了粒子群算法中粒子多样性、种类少,以及蚁群算法中初始化信息素匮乏及耗时过多的问题。仿真结果表明,与粒子群算法和蚁群算法相比,PSO-ACO融合算法在提高算法的全局搜索能力和搜索速度的前提下,极大地改善了算法寻找最优解的能力,实现了最优路径的规划。 展开更多
关键词 室内环境 最优路径规划 粒子群算法 蚁群算法 PSO-aco融合算法
在线阅读 下载PDF
基于ACO-BP神经网络的土石坝位移监测模型研究 被引量:4
13
作者 茹秋瑾 何自立 +2 位作者 杨军超 李晓琳 谭剑波 《水资源与水工程学报》 CSCD 2020年第2期196-201,共6页
建立安全监测网络模型来分析和预测大坝变形位移信息,对保障大坝安全稳定服役意义重大。针对大坝安全监测BP神经网络模型运算复杂、收敛速度慢、易陷于局部最优、不能准确反映和预测大坝运行状况的问题,引入蚁群算法(ACO)全局搜索功能搜... 建立安全监测网络模型来分析和预测大坝变形位移信息,对保障大坝安全稳定服役意义重大。针对大坝安全监测BP神经网络模型运算复杂、收敛速度慢、易陷于局部最优、不能准确反映和预测大坝运行状况的问题,引入蚁群算法(ACO)全局搜索功能搜寻BP神经网络参数最优解,并通过样本数据训练BP网络获得大坝变形位移预测值。工程实例应用表明:ACO-BP网络模型在参数优化方面较BP网络更易于收敛,误差较小、预测性能良好,可为大坝变形位移监测和安全预报提供一种新的非线性建模仿真分析方法。 展开更多
关键词 神经网络 蚁群算法 土石坝 变形位移监测
在线阅读 下载PDF
一种基于DLS和ACO的平台资源规划方法 被引量:5
14
作者 周翔翔 姚佩阳 +1 位作者 张杰勇 王欣 《计算机科学》 CSCD 北大核心 2012年第6期98-103,共6页
平台资源规划方法是作战任务规划的重要组成部分,为作战提供资源分配方案。描述了作战任务、平台以及它们之间的关系,建立了以最小化全部任务完成的截止时间和最大化平台资源的利用率为目标的数学模型。设计了用于求解此模型的动态列表... 平台资源规划方法是作战任务规划的重要组成部分,为作战提供资源分配方案。描述了作战任务、平台以及它们之间的关系,建立了以最小化全部任务完成的截止时间和最大化平台资源的利用率为目标的数学模型。设计了用于求解此模型的动态列表规划(Dynamic List Scheduling,DLS)与蚁群算法(Ant Colony Optimization Algorithm,ACO)相结合的算法,其描述了任务选择方法、ACO的二进制编码方案及候选解构造策略,设计了不可行候选解的修正策略和信息素更新方法,构造了包含任务选择平台的时间优先系数、平台功能能力优先系数和后续任务对平台需求程度3个因素的适应度函数。针对作战想定进行了仿真计算,结果表明,基于DLS和ACO的平台资源规划具有良好的规划效果,相比于他人算法,其具有更少的全部任务完成截止时间和更高的平台资源利用率。 展开更多
关键词 平台资源规划 动态列表规划 蚁群算法 任务优先权系数 修正策略
在线阅读 下载PDF
基于栅格地图U型陷阱填充的校园AGV路径规划
15
作者 吴春平 王丽颖 +2 位作者 姜锋 刘晓东 曾祥浩 《现代制造工程》 北大核心 2025年第10期73-81,126,共10页
针对传统蚁群优化(Aco Colony Optimization,ACO)算法在自动导引车(Automatic Guided Vehicle,AGV)路径规划中存在的收敛速度慢、易陷入局部最优和死锁(如U型陷阱)等问题,提出了一种改进栅格地图环境的算法。该算法通过在路径寻优前对... 针对传统蚁群优化(Aco Colony Optimization,ACO)算法在自动导引车(Automatic Guided Vehicle,AGV)路径规划中存在的收敛速度慢、易陷入局部最优和死锁(如U型陷阱)等问题,提出了一种改进栅格地图环境的算法。该算法通过在路径寻优前对栅格地图中的U型陷阱进行匹配与填充来优化搜索过程。首先,对AGV路径规划环境进行栅格建模,并分别定义不可填充模型和多种可填充的3×3子单元栅格模型,对于U型陷阱及无效的节点,采用二维卷积进行迭代匹配与填充;然后,应用蚁群优化算法进行路径规划,能够有效避免蚂蚁在搜索过程中因陷入U型陷阱而导致的路径收敛速度慢和易陷入局部最优问题;最后,分别在U型陷阱栅格地图、迷宫环境地图及实际校园环境栅格地图中进行仿真验证,结果表明,该算法对栅格地图中的可通行节点填充率最高达83.5%,在路径规划中寻路时长最多减少了53.85%、路径长度最大减少了25.12%,总体来看,在寻路时长和路径长度上的优化效果都较为明显,尤其在处理更复杂的障碍环境时,优化效果更突出。 展开更多
关键词 自动导引车 U型陷阱 蚁群优化算法 栅格地图填充
在线阅读 下载PDF
基于改进ACO算法的印制电路板装配研究 被引量:3
16
作者 李小龙 罗家祥 胡跃明 《计算机工程》 CAS CSCD 北大核心 2011年第8期241-243,共3页
引入带顺序相关切换时间的单机带权延期模型,研究印制电路板(PCB)装配中单生产线多板型的调度问题,使用改进的蚁群优化(ACO)算法对其进行求解。在改进算法中,使用带禁忌表的信息素更新策略防止算法过早收敛,以多线程方式实现局部搜索,... 引入带顺序相关切换时间的单机带权延期模型,研究印制电路板(PCB)装配中单生产线多板型的调度问题,使用改进的蚁群优化(ACO)算法对其进行求解。在改进算法中,使用带禁忌表的信息素更新策略防止算法过早收敛,以多线程方式实现局部搜索,通过路径池使局部搜索与蚁群进行交互和通信。测试结果表明,改进算法可以有效提高PCB装配效率,降低生产任务延期率。 展开更多
关键词 印制电路板装配 局部搜索 单机带权延期模型 蚁群优化算法
在线阅读 下载PDF
基于多策略混合鲸鱼-蚁群优化算法的装配序列优化
17
作者 黎响 王永 田德 《太阳能学报》 北大核心 2025年第2期565-575,共11页
装配序列规划(ASP)是风电机组设计和制造的关键内容,对产品的生产效率和成本有重要影响。SP问题是一个典型的NP完全问题,需使用有效的方法来搜索最优或近优的装配序列,但常用智能优化算法的参数值获取比较困难,导致在搜索效率和收敛精... 装配序列规划(ASP)是风电机组设计和制造的关键内容,对产品的生产效率和成本有重要影响。SP问题是一个典型的NP完全问题,需使用有效的方法来搜索最优或近优的装配序列,但常用智能优化算法的参数值获取比较困难,导致在搜索效率和收敛精度上存在一定局限性。为此,提出一种求解SP问题的多策略混合鲸鱼-蚁群优化算法。在计算过程中,使用增加精英反向学习策略(OBL)、差分进化算法(DE)的多策略混合鲸鱼算法优化蚁群算法的参数,然后再采用蚁群算法搜索最优或近优的装配序列。计算实验表明:多策略混合鲸鱼-蚁群优化算法降低了参数设置的复杂性,在求解SP问题上,与传统蚁群算法相比,算法的收敛速度和寻优能力得到很大提高。 展开更多
关键词 装配序列规划 风电机组 参数 多策略混合鲸鱼-蚁群算法
在线阅读 下载PDF
基于改进Ant-miner算法的分类规则挖掘 被引量:3
18
作者 肖菁 梁燕辉 《计算机工程》 CAS CSCD 2012年第17期162-165,共4页
为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点... 为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点变异,由此扩大规则的搜索空间,提高规则的预测准确度。在Ant-miner算法的信息素更新公式中加入挥发系数,使其更接近现实蚂蚁的觅食行为,防止算法过早收敛。基于UCI标准数据的实验结果表明,该算法相比传统Ant-miner算法具有更高的预测准确度。 展开更多
关键词 ant-miner算法 分类规则挖掘 数据挖掘 蚁群优化 规则修剪策略
在线阅读 下载PDF
基于IP-ACO算法的航天器测控资源调度技术 被引量:1
19
作者 王海波 徐敏强 +1 位作者 王日新 李玉庆 《系统工程与电子技术》 EI CSCD 北大核心 2012年第4期719-725,共7页
采用多目标蚁群优化算法对航天器测控资源调度问题进行研究。在分析中低轨道航天器测控特点的基础上,综合考虑包括测控时间窗口约束和设备切换时间约束在内的多类复杂约束条件,建立多目标航天器测控资源调度模型。在Pareto蚁群优化算法... 采用多目标蚁群优化算法对航天器测控资源调度问题进行研究。在分析中低轨道航天器测控特点的基础上,综合考虑包括测控时间窗口约束和设备切换时间约束在内的多类复杂约束条件,建立多目标航天器测控资源调度模型。在Pareto蚁群优化算法的基础上,引入蚁群社会中的分工协作思想并构建测控任务时间约束有向图,设计基于任务选择期望的状态转移规则和基于自适应网格技术的权重更新策略,从而提高算法求解性能。仿真实验结果表明该方法能有效解决多目标航天器测控资源调度问题。 展开更多
关键词 多目标蚁群优化算法 任务调度 时间约束有向图 自适应网格
在线阅读 下载PDF
基于Grid-VFACO的数字化车间WSNs路由算法 被引量:1
20
作者 朱绍文 纪志成 +1 位作者 王艳 吴定会 《传感器与微系统》 CSCD 北大核心 2014年第1期134-136,140,共4页
针对数字化车间中无线传感器网络(WSNs)对数据采集频率高,能量消耗快,提出了基于网格和虚拟力导向的蚁群优化(Grid-VFACO)高能效WSNs路由算法。该算法根据最优簇首数将数据采集区划分成网格,在网格中采用基于候选者的机制选择簇首,实现... 针对数字化车间中无线传感器网络(WSNs)对数据采集频率高,能量消耗快,提出了基于网格和虚拟力导向的蚁群优化(Grid-VFACO)高能效WSNs路由算法。该算法根据最优簇首数将数据采集区划分成网格,在网格中采用基于候选者的机制选择簇首,实现簇首均匀分布。在簇首形成的上层网络中,利用节点间的虚拟吸引力作为蚁群算法中转移概率规则启发因子,寻找最优数据转发路径。仿真实验结果表明:该算法能够有效减少网络能耗,保证数字化车间WSNs长时间稳定地工作。 展开更多
关键词 数字化车间 无线传感器网络 网格 虚拟力 蚁群优化 路由算法
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部