期刊文献+
共找到1,052篇文章
< 1 2 53 >
每页显示 20 50 100
Research on global path planning based on ant colony optimization for AUV 被引量:6
1
作者 王宏健 熊伟 《Journal of Marine Science and Application》 2009年第1期58-64,共7页
Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning usi... Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments. 展开更多
关键词 autonomous underwater vehicle (AUV) path planning ant colony optimization pathsmoothing
在线阅读 下载PDF
Optimization of Air Route Network Nodes to Avoid ″Three Areas″ Based on An Adaptive Ant Colony Algorithm 被引量:9
2
作者 Wang Shijin Li Qingyun +1 位作者 Cao Xi Li Haiyun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第4期469-478,共10页
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct... Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%. 展开更多
关键词 air route network planning three area avoidance optimization of air route network node adaptive ant colony algorithm grid environment
在线阅读 下载PDF
Cooperative Search of UAV Swarm Based on Ant Colony Optimization with Artificial Potential Field 被引量:4
3
作者 XING Dongjing ZHEN Ziyang +1 位作者 ZHOU Chengyu GONG Huajun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期912-918,共7页
An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed... An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm. 展开更多
关键词 ant colony optimization artificial potential field cooperative search unmanned aerial vehicle(UAV)swarm
在线阅读 下载PDF
Ant Colony Optimization for Task Allocation in Multi-Agent Systems 被引量:1
4
作者 王鲁 王志良 +1 位作者 胡四泉 刘磊 《China Communications》 SCIE CSCD 2013年第3期125-132,共8页
Task allocation is a key issue of agent cooperation mechanism in Multi-Agent Systems. The important features of an agent system such as the latency of the network infrastructure, dynamic topology, and node heterogenei... Task allocation is a key issue of agent cooperation mechanism in Multi-Agent Systems. The important features of an agent system such as the latency of the network infrastructure, dynamic topology, and node heterogeneity impose new challenges on the task allocation in Multi-Agent environments. Based on the traditional parallel computing task allocation method and Ant Colony Optimization (ACO), a novel task allocation method named Collection Path Ant Colony Optimization (CPACO) is proposed to achieve global optimization and reduce processing time. The existing problems of ACO are analyzed; CPACO overcomes such problems by modifying the heuristic function and the update strategy in the Ant-Cycle Model and establishing a threedimensional path pheromone storage space. The experimental results show that CPACO consumed only 10.3% of the time taken by the Global Search Algorithm and exhibited better performance than the Forward Optimal Heuristic Algorithm. 展开更多
关键词 multi-agent systems task alloca- tion ant colony optimization efficiency factor
在线阅读 下载PDF
A Preliminary Study of Automatic Delineation of Eyes on CT Images Using Ant Colony Optimization 被引量:2
5
作者 李永杰 谢维夫 尧德中 《Journal of Electronic Science and Technology of China》 2007年第1期66-69,共4页
Eyes are important organs-at-risk (OARs) that should be protected during the radiation treatment of those head tumors. Correct delineation of the eyes on CT images is one of important issues for treatment planning t... Eyes are important organs-at-risk (OARs) that should be protected during the radiation treatment of those head tumors. Correct delineation of the eyes on CT images is one of important issues for treatment planning to protect the eyes as much as possible. In this paper, we propose a new method, named ant colony optimization (ACO), to delineate the eyes automatically. In the proposed algorithm, each ant tries to find a closed path, and some pheromone is deposited on the visited path when the ant fmds a path. After all ants fmish a circle, the best ant will lay some pheromone to enforce the best path. The proposed algorithm is verified on several CT images, and the preliminary results demonstrate the feasibility of ACO for the delineation problem. 展开更多
关键词 automatic delineation CT images ant colony optimization
在线阅读 下载PDF
Novel Voltage Scaling Algorithm Through Ant Colony Optimization for Embedded Distributed Systems
6
作者 章立生 丁丹 《Journal of Beijing Institute of Technology》 EI CAS 2007年第4期430-436,共7页
Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some wi... Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available. 展开更多
关键词 dynamic voltage algorithm distributed system ant colony optimization MULTI-PROCESSOR
在线阅读 下载PDF
Identification of Dynamic Parameters Based on Pseudo-Parallel Ant Colony Optimization Algorithm
7
作者 赵凤遥 马震岳 张运良 《Journal of Southwest Jiaotong University(English Edition)》 2007年第2期111-116,共6页
For the parameter identification of dynamic problems, a pseudo-parallel ant colony optimization (PPACO) algorithm based on graph-based ant system (AS) was introduced. On the platform of ANSYS dynamic analysis, the... For the parameter identification of dynamic problems, a pseudo-parallel ant colony optimization (PPACO) algorithm based on graph-based ant system (AS) was introduced. On the platform of ANSYS dynamic analysis, the PPACO algorithm was applied to the identification of dynamic parameters successfully. Using simulated data of forces and displacements, elastic modulus E and damping ratio ξ was identified for a designed 3D finite element model, and the detailed identification step was given. Mathematical example and simulation example show that the proposed method has higher precision, faster convergence speed and stronger antinoise ability compared with the standard genetic algorithm and the ant colony opfimization (ACO) algorithms. 展开更多
关键词 Parameters identification ant system Pseudo-parallel ant colony optimization (PPaco) ANSYS
在线阅读 下载PDF
舰船管路布置PG-MACO优化方法 被引量:3
8
作者 林焰 金庭宇 杨宇超 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第7期1027-1035,共9页
针对舰船管路设计效率低下的问题提出一种管路布置优化方法.综合考虑安全性、经济性、协调性和可操作性等工程背景建立优化数学模型,改进蚁群算法在处理混合管路布置工况下的缺陷,提出优化可行解搜索的空间状态转移策略,提升信息素启发... 针对舰船管路设计效率低下的问题提出一种管路布置优化方法.综合考虑安全性、经济性、协调性和可操作性等工程背景建立优化数学模型,改进蚁群算法在处理混合管路布置工况下的缺陷,提出优化可行解搜索的空间状态转移策略,提升信息素启发效果并加速算法收敛的信息素扩散机制,面向混合管路布置工况设计多蚁群协同进化机制.基于二次开发技术实现本方法在第三方设计软件上的应用,采用核级一回路管道布置工程案例进行验证.结果表明信息素高斯扩散多蚁群优化(PG-MACO)算法的性能和布置效果优于传统蚁群算法,寻路效率提升58.38%,收敛代数缩短43.24%,布置结果中管路长度缩短33.88%,管路折弯次数减少41.67%,验证了本方法的有效性和工程实用性. 展开更多
关键词 舰船管路 布局优化 蚁群优化算法 信息素扩散
在线阅读 下载PDF
基于ACO算法的跨市域血液信息管理系统的应用与研究
9
作者 司丽萍 《电子设计工程》 2024年第16期166-169,173,共5页
针对我省市域间血站信息孤岛、血液资源无法精准调配实现等问题,对我省各市血站信息管理系统进行组合式联网模式改造,通过Quartz结合蚁群算法(ACO)解决血样跨市域动态规划调度难题,实现市际间全时段精准调配、血液动态需求管理等功能,... 针对我省市域间血站信息孤岛、血液资源无法精准调配实现等问题,对我省各市血站信息管理系统进行组合式联网模式改造,通过Quartz结合蚁群算法(ACO)解决血样跨市域动态规划调度难题,实现市际间全时段精准调配、血液动态需求管理等功能,可有效解决市域间血站信息孤岛、血样多重运力浪费、血样闲置等问题,推动我省血液管理的数字化、智能化、协同化进程。系统运营一年库存废弃率同比下降53.12%,运输成本同比降低(34.15±5.16)元/单位。 展开更多
关键词 血站 信息系统 跨域 蚁群算法 数字化建设
在线阅读 下载PDF
An Ant Colony Algorithm Based on Cross-Layer Design for Routing and Wavelength Assignment in Optical Satellite Networks 被引量:17
10
作者 Guoli Wen Qi Zhang +2 位作者 Houtian Wang Qinghua Tian Ying Tao 《China Communications》 SCIE CSCD 2017年第8期63-75,共13页
This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ... This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business. 展开更多
关键词 optical satellite network routing and wavelength assignment ant colony optimization cross-layer design Doppler wavelength shift
在线阅读 下载PDF
Departure Trajectory Design Based on Pareto Ant Colony Algorithm
11
作者 Sun Fanrong Han Songchen Qian Ge 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第4期451-460,共10页
Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and e... Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and efficient departure trajectory are on a rise.Therefore,a departure trajectory design was established for performancebased navigation technology,and a multi-objective optimization model was developed,with constraints of safety and noise influence,as well as optimization targets of efficiency and simplicity.An improved ant colony algorithm was then proposed to solve the optimization problem.Finally,an experiment was conducted using the Lanzhou terminal airspace operation data,and the results showed that the designed departure trajectory was feasible and efficient in decreasing the aircraft noise influence. 展开更多
关键词 aircraft noise departure trajectory design multi-objective optimization Pareto ant colony algorithm
在线阅读 下载PDF
基于ACO−KELM 的采空区遗煤温度预测模型研究
12
作者 翟小伟 王辰 +3 位作者 郝乐 李心田 侯钦元 马腾 《工矿自动化》 CSCD 北大核心 2024年第12期128-135,共8页
现有采空区遗煤温度预测研究多侧重于温度与气体浓度之间的关系,较少考虑采空区内遗煤温度与距工作面距离及漏风风速之间的复杂非线性关系。针对该问题,提出了一种基于蚁群优化算法优化核极限学习机(ACO−KELM)的采空区遗煤温度预测模型... 现有采空区遗煤温度预测研究多侧重于温度与气体浓度之间的关系,较少考虑采空区内遗煤温度与距工作面距离及漏风风速之间的复杂非线性关系。针对该问题,提出了一种基于蚁群优化算法优化核极限学习机(ACO−KELM)的采空区遗煤温度预测模型。在葫芦素煤矿21404工作面采空区布置束管及分布式光纤,对21404工作面采空区内O_(2),CO,CO_(2)浓度和温度数据进行采集,同时结合采空区内漏风强度和距工作面水平距离构建KELM模型,通过ACO对KELM模型中的正则系数和核参数进行寻优,获得最优超参数组合,进而得到性能最优的KELM模型。与基于极限学习机(ELM)和基于随机森林(RF)算法的预测模型相比,ACO−KELM模型在测试集上的平均绝对误差为0.0701℃,均方根误差为0.0748℃,较基于ELM模型分别降低了65%和195%,较基于RF模型分别降低了53%和156%;ACO−KELM模型在测试集上的判定系数为0.9635,与训练集的判定系数仅相差0.01,说明该模型未陷入过拟合且拟合程度较高。 展开更多
关键词 采空区遗煤 煤自燃 遗煤温度预测 核极限学习机 蚁群算法 漏风强度 指标气体分析法 漏风风速
在线阅读 下载PDF
基于ACO-BP神经网络的光伏发电短期功率预测研究
13
作者 钟安德 吴自玉 +2 位作者 谢宗效 毛玉明 杨留方 《电子设计工程》 2024年第18期82-86,共5页
光伏发电存在着波动性和不确定性,对光伏发电系统的功率预测是提高光伏发电的利用率和经济效益的重要举措。通过构建蚁群算法(ACO)优化后的BP神经网络预测模型进行短期光伏功率预测研究,引入灰色关联度分析,确定影响光伏发电的主要因素... 光伏发电存在着波动性和不确定性,对光伏发电系统的功率预测是提高光伏发电的利用率和经济效益的重要举措。通过构建蚁群算法(ACO)优化后的BP神经网络预测模型进行短期光伏功率预测研究,引入灰色关联度分析,确定影响光伏发电的主要因素,提高模型的预测准确性。该模型综合了ACO的寻优能力和BP神经网络的自学习、自适应能力。将训练好的模型用于光伏发电短期功率预测研究,对比仿真结果得出ACO-BP神经网络模型在晴天时的预测误差为8.60%,多云时的预测误差为12.53%,雨天时的预测误差为26.27%,其预测精度均优于原BP神经网络模型。 展开更多
关键词 光伏发电 蚁群算法 BP神经网络 参数优化 短期功率预测
在线阅读 下载PDF
基于Dijkstra-ACO混合算法的煤矿井下应急逃生路径动态规划
14
作者 卢国菊 史文芳 《工矿自动化》 CSCD 北大核心 2024年第10期147-151,178,共6页
煤矿井下应急逃生路径规划需要根据煤矿井下环境的变化及时调整,但传统方法依赖静态网络和固定权重而无法实现逃生路径规划适应井下环境动态变化。针对上述问题,提出了一种基于Dijkstra-ACO(蚁群优化)混合算法的煤矿井下应急逃生路径动... 煤矿井下应急逃生路径规划需要根据煤矿井下环境的变化及时调整,但传统方法依赖静态网络和固定权重而无法实现逃生路径规划适应井下环境动态变化。针对上述问题,提出了一种基于Dijkstra-ACO(蚁群优化)混合算法的煤矿井下应急逃生路径动态规划方法。基于巷道坡度和水位对逃生的影响分析,建立了煤矿井下应急逃生最优路径动态规划模型,实现逃生路径随巷道坡度、水位等环境变化而实时调整,从而提高逃生效率和安全性。采用Dijkstra-ACO混合算法求解煤矿井下应急逃生最优路径动态规划模型,即利用Dijkstra算法快速确定初始路径,引入ACO算法寻找距离最短且安全性最高的逃生路径,实现规划路径能够适应环境变化。搭建了模拟某煤矿多种巷道类型及其坡度、水位等参数的仿真环境,开展了应急逃生路径动态规划实验。结果表明,在50 m×100 m,100 m×200 m,150 m×250 m 3种不同尺寸的测试区域中,基于Dijkstra-ACO混合算法规划的路径长度比基于A^(*)算法和基于改进蚁群算法规划的路径长度缩短了19%以上,同时避障率提高了5%以上。 展开更多
关键词 煤矿井下应急逃生 路径动态规划 Dijkstra-aco混合算法 蚁群优化算法
在线阅读 下载PDF
运力短缺下的生活物资临时分配点选址-路径优化研究
15
作者 李国旗 郝志丹 +1 位作者 杨佳鑫 程佳豪 《交通运输系统工程与信息》 北大核心 2025年第2期304-313,共10页
重大突发灾害容易引发运力资源短缺,这对受灾地区的生活物资保障工作构成挑战。据此,本文设计由物资中转站、临时分配点和需求点组成的3级配送网络,以便向受灾地区高效运送生活物资。考虑到生活物资临时分配点的配送能力限制和灾后运力... 重大突发灾害容易引发运力资源短缺,这对受灾地区的生活物资保障工作构成挑战。据此,本文设计由物资中转站、临时分配点和需求点组成的3级配送网络,以便向受灾地区高效运送生活物资。考虑到生活物资临时分配点的配送能力限制和灾后运力短缺,采用多车程与设施协作配送策略,构建以最小化剥夺成本为目标的混合整数规划模型,设计包含max-min、伪随机转移和多维信息素等策略的改进蚁群优化算法(IACO)对模型进行求解,数值结果证实了所开发方法在计算效率和求解质量方面的有效性。最后,以上海市松江区实际案例作为算例进行计算分析。结果表明:与独立配送相比,采用设施协作配送模式,可将剥夺成本降低40.68%,物资总分配量提升7.42%,剩余需求量方差减少13.18%。 展开更多
关键词 物流工程 选址-路径 改进的蚁群优化算法 应急物流 运力短缺
在线阅读 下载PDF
基于改进ACO算法的多UAV协同航路规划 被引量:11
16
作者 张耀中 李寄玮 +1 位作者 胡波 张建东 《火力与指挥控制》 CSCD 北大核心 2017年第5期139-145,共7页
针对无人机(Unmanned Aerial Vehicle,UAV)在执行任务过程中遇到的诸如敌方防空火力、地形障碍及恶略天气等各类威胁源,采用威胁源概率分布的方法进行威胁的量化处理,构建任务空间的威胁概率密度分布图,有效消除了威胁源的差异性。根据... 针对无人机(Unmanned Aerial Vehicle,UAV)在执行任务过程中遇到的诸如敌方防空火力、地形障碍及恶略天气等各类威胁源,采用威胁源概率分布的方法进行威胁的量化处理,构建任务空间的威胁概率密度分布图,有效消除了威胁源的差异性。根据UAV在任务飞行过程中的性能约束与时、空协同约束,同时考虑任务过程中UAV的损毁概率最小、任务航程最短,构建了相应的综合任务航路代价最优化目标函数。结合传统蚁群优化算法(Ant Colony Optimization,ACO)在解决此类问题中的不足,给出了相应的改进策略,提出采用协同多种群ACO进化策略来实现多UAV在满足时、空协同约束下的协同航路规划。通过相应的仿真计算表明,改进后的ACO协同多种群进化策略算法更适用于多UAV协同任务航路规划问题,具有一定的实用性。从而为多UAV协同任务航路规划问题的求解提供了科学的决策依据。 展开更多
关键词 航路规划 无人机 蚁群算法 协同进化
在线阅读 下载PDF
Application of GA, PSO, and ACO Algorithms to Path Planning of Autonomous Underwater Vehicles 被引量:8
17
作者 Mohammad Pourmahmood Aghababa Mohammad Hossein Amrollahi Mehdi Borjkhani 《Journal of Marine Science and Application》 2012年第3期378-386,共9页
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwa... In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account. 展开更多
关键词 path planning autonomous underwater vehicle genetic algorithm (GA) particle swarmoptimization (PSO) ant colony optimization (aco collision avoidance
在线阅读 下载PDF
基于ACO的横向供应策略两级备件库存研究 被引量:8
18
作者 关娇 刘少伟 +1 位作者 刘剑 张茜 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2013年第1期90-94,共5页
对装备可维修备件库存配置进行科学的优化决策,寻求装备可维修备件保障费用与装备战备完好性之间的最佳平衡在装备维修保障中是十分重要的。在此背景下进行多级可维修备件的库存研究,建立可维修备件多级库存模型,对模型中的重要参数和... 对装备可维修备件库存配置进行科学的优化决策,寻求装备可维修备件保障费用与装备战备完好性之间的最佳平衡在装备维修保障中是十分重要的。在此背景下进行多级可维修备件的库存研究,建立可维修备件多级库存模型,对模型中的重要参数和库存指标进行了评估,设计蚁群优化算法,将可维修备件以恰当的数量配置在恰当的多级库存系统中,以达到备件平均延误时间允许下的最低备件保障费用。算例结果表明:引入横向供应策略节省了41.37%的可维修备件的保障总费用。 展开更多
关键词 库存系统 可维修备件 横向供应 蚁群算法
在线阅读 下载PDF
基于ACO-BP神经网络的土石坝位移监测模型研究 被引量:3
19
作者 茹秋瑾 何自立 +2 位作者 杨军超 李晓琳 谭剑波 《水资源与水工程学报》 CSCD 2020年第2期196-201,共6页
建立安全监测网络模型来分析和预测大坝变形位移信息,对保障大坝安全稳定服役意义重大。针对大坝安全监测BP神经网络模型运算复杂、收敛速度慢、易陷于局部最优、不能准确反映和预测大坝运行状况的问题,引入蚁群算法(ACO)全局搜索功能搜... 建立安全监测网络模型来分析和预测大坝变形位移信息,对保障大坝安全稳定服役意义重大。针对大坝安全监测BP神经网络模型运算复杂、收敛速度慢、易陷于局部最优、不能准确反映和预测大坝运行状况的问题,引入蚁群算法(ACO)全局搜索功能搜寻BP神经网络参数最优解,并通过样本数据训练BP网络获得大坝变形位移预测值。工程实例应用表明:ACO-BP网络模型在参数优化方面较BP网络更易于收敛,误差较小、预测性能良好,可为大坝变形位移监测和安全预报提供一种新的非线性建模仿真分析方法。 展开更多
关键词 神经网络 蚁群算法 土石坝 变形位移监测
在线阅读 下载PDF
具有能量和位置意识基于ACO的WSN路由算法 被引量:14
20
作者 王小明 安小明 《电子学报》 EI CAS CSCD 北大核心 2010年第8期1763-1769,共7页
通过融合传感器节点的剩余能量和地理位置信息,设计一种具有传感器节点能量和地理位置意识的基于蚁群优化方法的无线传感器网络路由算法(ELACO);针对路由空洞现象,提出一种路由回退机制,提高了路由搜索成功率.仿真结果表明,ELACO算法具... 通过融合传感器节点的剩余能量和地理位置信息,设计一种具有传感器节点能量和地理位置意识的基于蚁群优化方法的无线传感器网络路由算法(ELACO);针对路由空洞现象,提出一种路由回退机制,提高了路由搜索成功率.仿真结果表明,ELACO算法具有很高的路由查寻成功率,能够更好地均衡传感器节点能量消耗,从而延长网络使用寿命. 展开更多
关键词 无线传感器网络 蚁群优化方法 前向区域 前向邻居节点 路由回退机制
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部