In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservation...In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservations principle at the groove/land boundary in each method. The block-weight approach was implemented to deal with the non-coincidence of mesh and radial groove pattern in nu- merical method. It was observed that the numerical solutions had higher precision as mesh number exceed 70 x 70, and the relaxation iteration of differential scheme presented the fastest convergence speed when relaxation factor was close to 1.94.展开更多
This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification o...This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.展开更多
基金Supported by the Ministerial Level Foundation(2220060029)
文摘In order to calculate the pressure distribution of radial grooved thrust bearing, analytical and numerical methods were applied respectively. Grooved region and land region were linked by u- sing the mass conservations principle at the groove/land boundary in each method. The block-weight approach was implemented to deal with the non-coincidence of mesh and radial groove pattern in nu- merical method. It was observed that the numerical solutions had higher precision as mesh number exceed 70 x 70, and the relaxation iteration of differential scheme presented the fastest convergence speed when relaxation factor was close to 1.94.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.