Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresea...Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresearch introduces a computational model designed to predict the lifespan of corrosion initiation in reinforced concretesquare piles when applied reverse-seepage pressure.The model considers the impacts of chloride binding and the tripletime-dependence property among the permeability,the corrected surface chloride concentration,and the diffusioncoefficient.The proposed numerical model is solved using the alternating direction implicit(ADI)approach,and itsaccuracy and reliability are evaluated by contrasting the computational outcomes with the analytical solution andexperimental results.Furthermore,the primary factors contributing to the corrosion of reinforced concrete square pilesare analyzed.The results indicate that applying RST can decrease the chloride penetration depth and prolong the lifespanof corrosion initiation in square piles.The water-cement ratio and reverse seepage pressure are the most influentialfactors.A water pressure of 0.4 MPa can double the life of concrete,and the durable life of concrete with a water-cementratio of 0.3 can reach 100 years.展开更多
This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused ...This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused by the slow-speed motion of ship targets.Then,we realize signal restoration and image reconstruction with the alternating direction method of multipliers(ADMM).Furthermore,we adopt the interferometric technique to produce the three-dimensional(3D)images of ship targets,namely interferometric inverse synthetic aperture radar(InISAR)imaging.Experiments based on the simulated data are utilized to verify the validity of the proposed method.展开更多
Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order princip...Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.展开更多
In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detectio...In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance.展开更多
基金Projects(52178371,52108355,52178321)supported by the National Natural Science Foundation of ChinaProject(202305)supported by the Research Project of Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,China。
文摘Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresearch introduces a computational model designed to predict the lifespan of corrosion initiation in reinforced concretesquare piles when applied reverse-seepage pressure.The model considers the impacts of chloride binding and the tripletime-dependence property among the permeability,the corrected surface chloride concentration,and the diffusioncoefficient.The proposed numerical model is solved using the alternating direction implicit(ADI)approach,and itsaccuracy and reliability are evaluated by contrasting the computational outcomes with the analytical solution andexperimental results.Furthermore,the primary factors contributing to the corrosion of reinforced concrete square pilesare analyzed.The results indicate that applying RST can decrease the chloride penetration depth and prolong the lifespanof corrosion initiation in square piles.The water-cement ratio and reverse seepage pressure are the most influentialfactors.A water pressure of 0.4 MPa can double the life of concrete,and the durable life of concrete with a water-cementratio of 0.3 can reach 100 years.
文摘针对物联网设备部署在较偏远地区而导致的传输链路易受损或传输覆盖范围有限等问题,在此场景中引入无人机和移动边缘计算(mobile edge computing, MEC)技术,有效改善物联网设备能源供给,优化计算资源,同时提升通信覆盖范围,减少不必要的网络开销.另外,区块链技术的引入保证了数据计算卸载与交互过程中的安全性和可靠性,实现了数据共享.因此,面向无人机辅助的物联网系统提出一种融合MEC和区块链的资源分配决策方法,以实现MEC系统和区块链系统性能的最佳权衡为目标,综合考虑频谱资源和计算资源的分配,构建问题模型,并采用基于交替方向乘子(alternating direction method of multipliers, ADMM)法的分布式优化算法求解该优化问题.仿真结果表明,所提优化框架可以有效减少MEC系统的总能耗和区块链系统的计算时延.同时,所提方法具有良好的收敛性能,系统稳定性得到充分保证.
基金This work was supported by the National Natural Science Foundation of China(61871146).
文摘This paper concentrates on super-resolution imaging of the ship target under the sparse aperture situation.Firstly,a multi-static configuration is utilized to solve the coherent processing interval(CPI)problem caused by the slow-speed motion of ship targets.Then,we realize signal restoration and image reconstruction with the alternating direction method of multipliers(ADMM).Furthermore,we adopt the interferometric technique to produce the three-dimensional(3D)images of ship targets,namely interferometric inverse synthetic aperture radar(InISAR)imaging.Experiments based on the simulated data are utilized to verify the validity of the proposed method.
基金supported by the National Natural Science Foundationof China(51275348)
文摘Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.
文摘In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance.