The neutron supermirror is an important neutron optical device that can significantly improve the efficiency of neutron transport in neutron guides and has been widely used in research neutron sources.Three types of a...The neutron supermirror is an important neutron optical device that can significantly improve the efficiency of neutron transport in neutron guides and has been widely used in research neutron sources.Three types of algorithms,including approximately ten algorithms,have been developed for designing high-efficiency supermirror structures.In addition to its applications in neutron guides,in recent years,the use of neutron supermirrors in neutronfocusing mirrors has been proposed to advance the development of neutron scattering and neutron imaging instruments,especially those at compact neutron sources.In this new application scenario,the performance of supermirrors strongly affects the instrument performance;therefore,a careful evaluation of the design algorithms is needed.In this study,we examine two issues:the effect of nonuniform film thickness distribution on a curved substrate and the effect of the specific neutron intensity distribution on the performance of neutron supermirrors designed using existing algorithms.The effect of film thickness nonuniformity is found to be relatively insignificant,whereas the effect of the neutron intensity distribution over Q(where Q is the magnitude of the scattering vector of incident neutrons)is considerable.Selection diagrams that show the best design algorithm under different conditions are obtained from these results.When the intensity distribution is not considered,empirical algorithms can obtain the highest average reflectivity,whereas discrete algorithms perform best when the intensity distribution is taken into account.The reasons for the differences in performance between algorithms are also discussed.These findings provide a reference for selecting design algorithms for supermirrors for use in neutron optical devices with unique geometries and can be very helpful for improving the performance of focusing supermirror-based instruments.展开更多
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th...The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.展开更多
Pointing at naval ship projects creation and evaluation at stage of naval ship concept design,in the mechanism of integrated design based on naval ship synthesis model,ship projects creation and intelligent fuzzy eval...Pointing at naval ship projects creation and evaluation at stage of naval ship concept design,in the mechanism of integrated design based on naval ship synthesis model,ship projects creation and intelligent fuzzy evaluation method is researched,thus the applicability of each algorithm is obtained.Firstly,the naval ship synthesis model is introduced to design process,value and application status of synthesis model in integrated design is then exposed.Then the applicability of single target and multi targets SA algorithm is improved,and the quick generation of naval ship projects is done.After that,multiple projects evaluation method based on Vague fuzzy set is introduced to established the intelligent evaluation model,which can integrate effectively the quantitative and qualitative indexes.At last,the analysis of results comparison shows the advancement and rationality of each method.The example shows the integrated design process researched in this paper can be a great orientation of naval ship project design,and can also be used in other parts of naval ship development.展开更多
In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capabili...In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.展开更多
A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in sh...A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in short range top attack flight trajectory is optimized by using genetic algorithm. The short range top attack trajectory designed meets the design requirements, with the increase of the falling angle and the decrease of the minimum range. The application of genetic algorithm to top attack trajectory optimization is proved to be feasibly and effectively according to the analyses of results.展开更多
Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and e...Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and efficient departure trajectory are on a rise.Therefore,a departure trajectory design was established for performancebased navigation technology,and a multi-objective optimization model was developed,with constraints of safety and noise influence,as well as optimization targets of efficiency and simplicity.An improved ant colony algorithm was then proposed to solve the optimization problem.Finally,an experiment was conducted using the Lanzhou terminal airspace operation data,and the results showed that the designed departure trajectory was feasible and efficient in decreasing the aircraft noise influence.展开更多
Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic nois...Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 12027810 and 11322548)
文摘The neutron supermirror is an important neutron optical device that can significantly improve the efficiency of neutron transport in neutron guides and has been widely used in research neutron sources.Three types of algorithms,including approximately ten algorithms,have been developed for designing high-efficiency supermirror structures.In addition to its applications in neutron guides,in recent years,the use of neutron supermirrors in neutronfocusing mirrors has been proposed to advance the development of neutron scattering and neutron imaging instruments,especially those at compact neutron sources.In this new application scenario,the performance of supermirrors strongly affects the instrument performance;therefore,a careful evaluation of the design algorithms is needed.In this study,we examine two issues:the effect of nonuniform film thickness distribution on a curved substrate and the effect of the specific neutron intensity distribution on the performance of neutron supermirrors designed using existing algorithms.The effect of film thickness nonuniformity is found to be relatively insignificant,whereas the effect of the neutron intensity distribution over Q(where Q is the magnitude of the scattering vector of incident neutrons)is considerable.Selection diagrams that show the best design algorithm under different conditions are obtained from these results.When the intensity distribution is not considered,empirical algorithms can obtain the highest average reflectivity,whereas discrete algorithms perform best when the intensity distribution is taken into account.The reasons for the differences in performance between algorithms are also discussed.These findings provide a reference for selecting design algorithms for supermirrors for use in neutron optical devices with unique geometries and can be very helpful for improving the performance of focusing supermirror-based instruments.
基金Supported by the National Natural Science Foundation of China(1117202591116)
文摘The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.
基金supported by “The Fundamental Research Funds for the Central Universities”(3132014318)
文摘Pointing at naval ship projects creation and evaluation at stage of naval ship concept design,in the mechanism of integrated design based on naval ship synthesis model,ship projects creation and intelligent fuzzy evaluation method is researched,thus the applicability of each algorithm is obtained.Firstly,the naval ship synthesis model is introduced to design process,value and application status of synthesis model in integrated design is then exposed.Then the applicability of single target and multi targets SA algorithm is improved,and the quick generation of naval ship projects is done.After that,multiple projects evaluation method based on Vague fuzzy set is introduced to established the intelligent evaluation model,which can integrate effectively the quantitative and qualitative indexes.At last,the analysis of results comparison shows the advancement and rationality of each method.The example shows the integrated design process researched in this paper can be a great orientation of naval ship project design,and can also be used in other parts of naval ship development.
基金Sponsored by the Qing Lan Project of Jiangsu Province
文摘In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.
文摘A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in short range top attack flight trajectory is optimized by using genetic algorithm. The short range top attack trajectory designed meets the design requirements, with the increase of the falling angle and the decrease of the minimum range. The application of genetic algorithm to top attack trajectory optimization is proved to be feasibly and effectively according to the analyses of results.
文摘Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and efficient departure trajectory are on a rise.Therefore,a departure trajectory design was established for performancebased navigation technology,and a multi-objective optimization model was developed,with constraints of safety and noise influence,as well as optimization targets of efficiency and simplicity.An improved ant colony algorithm was then proposed to solve the optimization problem.Finally,an experiment was conducted using the Lanzhou terminal airspace operation data,and the results showed that the designed departure trajectory was feasible and efficient in decreasing the aircraft noise influence.
基金the Ministry of Science and Higher Education of the Russian Federation under Grant No.FSUN-2023-0007.
文摘Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.