Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study inve...Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study investigates the effects of radiation on p-gate AlGaN/GaN high-electron-mobility transistors(HEMTs).Under a high voltage,the HEMT leakage current increased sharply and was accompanied by a rapid increase in power density that caused"thermal burnout"of the devices.In addition,a burnout signature appeared on the surface of the burned devices,proving that a single-event burnout effect occurred.Additionally,degradation,including an increase in the on-resistance and a decrease in the breakdown voltage,was observed in devices irradiated with high-energy heavy ions and without bias.The latent tracks induced by heavy ions penetrated the heterojunction interface and extended into the GaN layer.Moreover,a new type of N_(2)bubble defect was discovered inside the tracks using Fresnel analysis.The accumulation of N_(2)bubbles in the heterojunction and buffer layers is more likely to cause leakage and failure.This study indicates that electrical stress accelerates the failure rate and that improving heat dissipation is an effective reinforcement method for GaN-based devices.展开更多
比较了空气桥跨细栅和空气桥跨栅总线两种源连接结构的1 mm AlGaN/GaN HEMTs器件的特性,对两种结构的管芯进行了等效电路参数提取。测试了两种布局方式下的不同源场板结构器件的射频以及功率性能,比较分析表明,空气桥跨细栅的源连接方...比较了空气桥跨细栅和空气桥跨栅总线两种源连接结构的1 mm AlGaN/GaN HEMTs器件的特性,对两种结构的管芯进行了等效电路参数提取。测试了两种布局方式下的不同源场板结构器件的射频以及功率性能,比较分析表明,空气桥跨细栅的源连接方式由于有效地降低了栅漏电容以及栅源电容,比空气桥跨栅总线源连接的器件能取得更好的频率特性以及功率特性。展开更多
We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors(HEMTs)with thin-barrier to minimize surface leakage current to enhance the breakdown voltage.The bilay...We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors(HEMTs)with thin-barrier to minimize surface leakage current to enhance the breakdown voltage.The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si_(3)N_(4) was deposited by plasma-enhanced chemical vapor deposition(PECVD)after removing 20-nm SiO_(2)pre-deposition layer.Compared to traditional Si_(3)N_(4) passivation for thin-barrier AlGaN/GaN HEMTs,Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54%to 8.40%.However,Si-rich bilayer passivation leads to a severer surface leakage current,so that it has a low breakdown voltage.The 20-nm SiO_(2)pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga–O bonds,resulting in a lower surface leakage current.In contrast to passivating Si-rich SiN directly,devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V.Radio frequency(RF)small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to f_(T)/f_(max) of 68 GHz/102 GHz.At 30 GHz and V_(DS)=20 V,devices achieve a maximum P_(out) of 5.2 W/mm and a peak power-added efficiency(PAE)of 42.2%.These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.展开更多
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium ...High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.展开更多
The behavior of Schottky contacts in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated by temperature-dependent current-voltage (T-I-V) measurements from 300 K to 473 K. The ideality factor and ...The behavior of Schottky contacts in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated by temperature-dependent current-voltage (T-I-V) measurements from 300 K to 473 K. The ideality factor and barrier height determined based on the thermionic emission (TE) theory are found to be strong functions of temperature, while present a great deviation from the theoretical value, which can be expounded by the barrier height inhomogeneities. In order to determine the forward current transport mechanisms, the experimental data are analyzed using numerical fitting method, considering the temperature-dependent series resistance. It is observed that the current flow at room temperature can be attributed to the tunneling mechanism, while thermionic emission current gains a growing proportion with an increase in temperature. Finally, the effective barrier height is derived based on the extracted thermionic emission component, and an evaluation of the density of dislocations is made from the I-V characteristics, giving a value of 1.49 × 10^7 cm^-2.展开更多
An atomic-level controlled etching(ACE)technology is invstigated for the fabrication of recessed gate AlGaN/GaN high-electron-mobility transistors(HEMTs)with high power added efficiency.We compare the recessed gate HE...An atomic-level controlled etching(ACE)technology is invstigated for the fabrication of recessed gate AlGaN/GaN high-electron-mobility transistors(HEMTs)with high power added efficiency.We compare the recessed gate HEMTs with conventional etching(CE)based chlorine,Cl_(2)-only ACE and BCl^(3)/Cl_(2)ACE,respectively.The mixed radicals of BCl_(3)/Cl_(2)were used as the active reactants in the step of chemical modification.For ensuring precise and controllable etching depth and low etching damage,the kinetic energy of argon ions was accurately controlled.These argon ions were used precisely to remove the chemical modified surface atomic layer.Compared to the HEMTs with CE,the characteristics of devices fabricated by ACE are significantly improved,which benefits from significant reduction of etching damage.For BCl_(3)/Cl_(2)ACE recessed HEMTs,the load pull test at 17 GHz shows a high power added efficiency(PAE)of 59.8%with an output power density of 1.6 W/mm at Vd=10 V,and a peak PAE of 44.8%with an output power density of 3.2 W/mm at Vd=20 V in a continuous-wave mode.展开更多
AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated by 256 MeV 127I ions with a fluence up to 1 × 10^10 ions/cm2 at the HI-13 heavy ion accelerator of the China Institute of Atomic Energy. Bot...AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated by 256 MeV 127I ions with a fluence up to 1 × 10^10 ions/cm2 at the HI-13 heavy ion accelerator of the China Institute of Atomic Energy. Both the drain current ld and the gate current Ig increased in off-state during irradiation. Post-irradiation measurement results show that the device output, transfer, and gate characteristics changed significantly. The saturation drain current, reverse gate leakage current, and the gate-lag all increased dramatically. By photo emission microscopy, electroluminescence hot spots were found in the gate area. All of the parameters were retested after one day and after one week, and no obvious annealing effect was observed under a temperature of 300 K. Further analysis demonstrates that swift heavy ions produced latent tracks along the ion trajectories through the hetero-junction. Radiation-induced defects in the latent tracks decreased the charges in the two-dimensional electron gas and reduced the carrier mobility, degrading device performance.展开更多
In this paper, we propose a two-dimensional(2D) analytic model for the channel potential and electric field distribution of the RESURF AlGaN/GaN high electron mobility transistors(HEMTs). The model is constructed by t...In this paper, we propose a two-dimensional(2D) analytic model for the channel potential and electric field distribution of the RESURF AlGaN/GaN high electron mobility transistors(HEMTs). The model is constructed by two-dimensional Poisson's equation with appropriate boundary conditions. In the RESURF AlGaN/GaN HEMTs, we utilize the RESURF effect generated by doped negative charge in the AlGaN layer and introduce new electric field peaks in the device channels,thus, homogenizing the distribution of electric field in channel and improving the breakdown voltage of the device. In order to reveal the influence of doped negative charge on the electric field distribution, we demonstrate in detail the influences of the charge doping density and doping position on the potential and electric field distribution of the RESURF AlGaN/GaN HEMTs with double low density drain(LDD). The validity of the model is verified by comparing the results obtained from the analytical model with the simulation results from the ISE software. This analysis method gives a physical insight into the mechanism of the AlGaN/GaN HEMTs and provides reference to modeling other AlGaN/GaN HEMTs device.展开更多
In this paper, we demonstrate that a Schottky drain can improve the forward and reverse blocking voltages (BVs) simultaneously in A1GaN/GaN high-electron mobility transistors (HEMTs). The mechanism of improving th...In this paper, we demonstrate that a Schottky drain can improve the forward and reverse blocking voltages (BVs) simultaneously in A1GaN/GaN high-electron mobility transistors (HEMTs). The mechanism of improving the two BVs is investigated by analysing the leakage current components and by software simulation. The forward BV increases from 72 V to 149 V due to the good Schottky contact morphology. During the reverse bias, the buffer leakage in the Ohmic- drain HEMT increases significantly with the increase of the negative drain bias. For the Schottky-drain HEMT, the buffer leakage is suppressed effectively by the formation of the depletion region at the drain terminal. As a result, the reverse BV is enhanced from -5 V to -49 V by using a Schottky drain. Experiments and the simulation indicate that a Schottky drain is desirable for power electronic applications.展开更多
The effects of varying layout geometries and various thermal boundary resistances(TBRs)on the thermal resistance of multi-finger AlGaN/GaN HEMTs are thoroughly investigated using a combination of a two-dimensional ele...The effects of varying layout geometries and various thermal boundary resistances(TBRs)on the thermal resistance of multi-finger AlGaN/GaN HEMTs are thoroughly investigated using a combination of a two-dimensional electro-thermal model coupled with the three-dimensional thermal model.Temperature measurement using micro-Raman thermography is performed to verify and enhance the accuracy of the thermal model.Simulation results indicate that thermal resistance weakly depends on the layout design because of the high thermal conductivity of SiC.Meanwhile,the analysis reveals that optimizing the TBR of the device could efficiently reduce the thermal resistance since TBR takes a significant proportion of the total thermal resistance.展开更多
The photoluminescence(PL) and electrical properties of Al GaN/GaN high electron mobility transistors(HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low ...The photoluminescence(PL) and electrical properties of Al GaN/GaN high electron mobility transistors(HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low Fe doping concentrations,the introduction of Fe atoms can result in a downward shift of the Fermi level in the GaN buffer layer, since the Fe atoms substitute Ga and introduce an FeGa^3+/2+ acceptor level. This results in a decrease in the yellow luminescence(YL) emission intensity accompanied by the appearance of an infrared(IR) emission, and a decrease in the off-state buffer leakage current(BLC). However, a further increase in the Fe doping concentration will conversely result in the upward shift of the Fermi level due to the incorporation of O donors under the large flow rate of the Fe source. This results in an increased YL emission intensity accompanied by a decrease in the IR emission intensity, and an increase in the BLC. The intrinsic relationship between the PL and BLC characteristics is expected to provide a simple and effective method to understand the variation of the electrical characteristic in the modulation Fe-doped HEMTs by optical measurements.展开更多
We investigate the negative transconductance effect in p-GaN gate AlGaN/GaN high-electron-mobility transistor(HEMT) associated with traps in the unintentionally doped GaN buffer layer. We find that a negative transcon...We investigate the negative transconductance effect in p-GaN gate AlGaN/GaN high-electron-mobility transistor(HEMT) associated with traps in the unintentionally doped GaN buffer layer. We find that a negative transconductance effect occurs with increasing the trap concentration and capture cross section when calculating transfer characteristics.The electron tunneling through AlGaN barrier and the reduced electric field discrepancy between drain side and gate side induced by traps are reasonably explained by analyzing the band diagrams, output characteristics, and the electric field strength of the channel of the devices under different trap concentrations and capture cross sections.展开更多
AlGaN/GaN high electron mobility transistors(HEMTs)are grown on 2-inch Si(111)substrates by MOCVD.The stacked AlGaN/AlN interlayer with different AlGaN thickness and indium surfactant doped is designed and optimized t...AlGaN/GaN high electron mobility transistors(HEMTs)are grown on 2-inch Si(111)substrates by MOCVD.The stacked AlGaN/AlN interlayer with different AlGaN thickness and indium surfactant doped is designed and optimized to relieve the tensile stress during GaN epitaxial growth.The top 1.0μm GaN buffer layer grown on the optimized AlGaN/AlN interlayer shows a crack-free and shining surface.The XRD results show that GaN(002)FWHM is 480arcsec and GaN(102)FWHM is 900arcsec.The AGaN/GaN HEMTs with optimized and nonoptimized AlGaN/AlN interlayer are grown and processed for comparison and the dc and rf characteristics are characterized.For the dc characteristics of the device with optimized AlGaN/AlN interlayer,maximum drain current density I_(dss)of 737mA/mm,peak transconductance G_(m)of 185mS/mm,drain leakage current density Ids of 1.7μA/mm,gate leakage current density I_(gs)of 24.8μA/mm and off-state breakdown voltage VBR of 67V are achieved with L_(g)/W_(g)/L_(g)/L_(g)=1/10/1/1μm.For the small signal rf characteristics of the device with optimized AlGaN/AlN interlayer,current gain cutoff frequency fT of 8.3 GHz and power gain cutoff frequency fmax of 19.9GHz are achieved with L_(g)/W_(g)/L_(g)/L_(g)=1/100/1/1μm.Furthermore,the best rf performance with fT of 14.5 GHz and fmax of 37.3 GHz is achieved with a reduced gate length of 0.7μm.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12035019,62234013,12205350,12075290,12175287)the China National Postdoctoral Program for Innovative Talents(BX20200340)+1 种基金the fund of Innovation Center of Radiation Application(No.KFZC2022020601)the Chinese Academy of Sciences(CAS)“Light of West China"Program hosted by Jian Zeng.
文摘Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study investigates the effects of radiation on p-gate AlGaN/GaN high-electron-mobility transistors(HEMTs).Under a high voltage,the HEMT leakage current increased sharply and was accompanied by a rapid increase in power density that caused"thermal burnout"of the devices.In addition,a burnout signature appeared on the surface of the burned devices,proving that a single-event burnout effect occurred.Additionally,degradation,including an increase in the on-resistance and a decrease in the breakdown voltage,was observed in devices irradiated with high-energy heavy ions and without bias.The latent tracks induced by heavy ions penetrated the heterojunction interface and extended into the GaN layer.Moreover,a new type of N_(2)bubble defect was discovered inside the tracks using Fresnel analysis.The accumulation of N_(2)bubbles in the heterojunction and buffer layers is more likely to cause leakage and failure.This study indicates that electrical stress accelerates the failure rate and that improving heat dissipation is an effective reinforcement method for GaN-based devices.
文摘比较了空气桥跨细栅和空气桥跨栅总线两种源连接结构的1 mm AlGaN/GaN HEMTs器件的特性,对两种结构的管芯进行了等效电路参数提取。测试了两种布局方式下的不同源场板结构器件的射频以及功率性能,比较分析表明,空气桥跨细栅的源连接方式由于有效地降低了栅漏电容以及栅源电容,比空气桥跨栅总线源连接的器件能取得更好的频率特性以及功率特性。
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFB1804902)the National Natural Science Foundation of China(Grant Nos.61904135,62090014,and 11690042)+4 种基金the Fundamental Research Funds for the Central Universities,the Innovation Fund of Xidian University(Grant No.YJS2213)the China Postdoctoral Science Foundation(Grant Nos.2018M640957 and BX20200262)the Key Research and Development Program of Guangzhou(Grant No.202103020002)Wuhu and Xidian University Special Fund for Industry–University-Research Cooperation(Grant No.XWYCXY-012021014HT)the Fundamental Research Funds for the Central Universities,China(Grant No.XJS221110)。
文摘We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors(HEMTs)with thin-barrier to minimize surface leakage current to enhance the breakdown voltage.The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si_(3)N_(4) was deposited by plasma-enhanced chemical vapor deposition(PECVD)after removing 20-nm SiO_(2)pre-deposition layer.Compared to traditional Si_(3)N_(4) passivation for thin-barrier AlGaN/GaN HEMTs,Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54%to 8.40%.However,Si-rich bilayer passivation leads to a severer surface leakage current,so that it has a low breakdown voltage.The 20-nm SiO_(2)pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga–O bonds,resulting in a lower surface leakage current.In contrast to passivating Si-rich SiN directly,devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V.Radio frequency(RF)small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to f_(T)/f_(max) of 68 GHz/102 GHz.At 30 GHz and V_(DS)=20 V,devices achieve a maximum P_(out) of 5.2 W/mm and a peak power-added efficiency(PAE)of 42.2%.These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.
文摘High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.
基金supported by the National Natural Science Foundation of China(Grant No.61334002)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory of China(Grant No.ZHD201206)
文摘The behavior of Schottky contacts in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated by temperature-dependent current-voltage (T-I-V) measurements from 300 K to 473 K. The ideality factor and barrier height determined based on the thermionic emission (TE) theory are found to be strong functions of temperature, while present a great deviation from the theoretical value, which can be expounded by the barrier height inhomogeneities. In order to determine the forward current transport mechanisms, the experimental data are analyzed using numerical fitting method, considering the temperature-dependent series resistance. It is observed that the current flow at room temperature can be attributed to the tunneling mechanism, while thermionic emission current gains a growing proportion with an increase in temperature. Finally, the effective barrier height is derived based on the extracted thermionic emission component, and an evaluation of the density of dislocations is made from the I-V characteristics, giving a value of 1.49 × 10^7 cm^-2.
基金supported by the National Natural Science Foundation of China(Grant Nos.62090014,62188102,62104184,62104178,and 62104179)the Fundamental Research Funds for the Central Universities of China(Grant Nos.XJS201102,XJS211101,XJS211106,and ZDRC2002)。
文摘An atomic-level controlled etching(ACE)technology is invstigated for the fabrication of recessed gate AlGaN/GaN high-electron-mobility transistors(HEMTs)with high power added efficiency.We compare the recessed gate HEMTs with conventional etching(CE)based chlorine,Cl_(2)-only ACE and BCl^(3)/Cl_(2)ACE,respectively.The mixed radicals of BCl_(3)/Cl_(2)were used as the active reactants in the step of chemical modification.For ensuring precise and controllable etching depth and low etching damage,the kinetic energy of argon ions was accurately controlled.These argon ions were used precisely to remove the chemical modified surface atomic layer.Compared to the HEMTs with CE,the characteristics of devices fabricated by ACE are significantly improved,which benefits from significant reduction of etching damage.For BCl_(3)/Cl_(2)ACE recessed HEMTs,the load pull test at 17 GHz shows a high power added efficiency(PAE)of 59.8%with an output power density of 1.6 W/mm at Vd=10 V,and a peak PAE of 44.8%with an output power density of 3.2 W/mm at Vd=20 V in a continuous-wave mode.
基金Project Supported bythe State Key Development Programfor Basic Research of China(2002CB311903)The Key Innovation Programof Chinese Academy of Sciences(KGCX2-SW-107)
基金supported by the National Natural Science Foundation of China(Grant No.61204112)
文摘AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated by 256 MeV 127I ions with a fluence up to 1 × 10^10 ions/cm2 at the HI-13 heavy ion accelerator of the China Institute of Atomic Energy. Both the drain current ld and the gate current Ig increased in off-state during irradiation. Post-irradiation measurement results show that the device output, transfer, and gate characteristics changed significantly. The saturation drain current, reverse gate leakage current, and the gate-lag all increased dramatically. By photo emission microscopy, electroluminescence hot spots were found in the gate area. All of the parameters were retested after one day and after one week, and no obvious annealing effect was observed under a temperature of 300 K. Further analysis demonstrates that swift heavy ions produced latent tracks along the ion trajectories through the hetero-junction. Radiation-induced defects in the latent tracks decreased the charges in the two-dimensional electron gas and reduced the carrier mobility, degrading device performance.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB351906)the National Natural Science Foundation of China(Grant No.61774114)+1 种基金the Key Program of the National Natural Science Foundation of China(Grant No.61334002)the 111 Project,China(Grant No.B12026)
文摘In this paper, we propose a two-dimensional(2D) analytic model for the channel potential and electric field distribution of the RESURF AlGaN/GaN high electron mobility transistors(HEMTs). The model is constructed by two-dimensional Poisson's equation with appropriate boundary conditions. In the RESURF AlGaN/GaN HEMTs, we utilize the RESURF effect generated by doped negative charge in the AlGaN layer and introduce new electric field peaks in the device channels,thus, homogenizing the distribution of electric field in channel and improving the breakdown voltage of the device. In order to reveal the influence of doped negative charge on the electric field distribution, we demonstrate in detail the influences of the charge doping density and doping position on the potential and electric field distribution of the RESURF AlGaN/GaN HEMTs with double low density drain(LDD). The validity of the model is verified by comparing the results obtained from the analytical model with the simulation results from the ISE software. This analysis method gives a physical insight into the mechanism of the AlGaN/GaN HEMTs and provides reference to modeling other AlGaN/GaN HEMTs device.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61334002 and 61106106)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China(Grant No.ZHD201206)
文摘In this paper, we demonstrate that a Schottky drain can improve the forward and reverse blocking voltages (BVs) simultaneously in A1GaN/GaN high-electron mobility transistors (HEMTs). The mechanism of improving the two BVs is investigated by analysing the leakage current components and by software simulation. The forward BV increases from 72 V to 149 V due to the good Schottky contact morphology. During the reverse bias, the buffer leakage in the Ohmic- drain HEMT increases significantly with the increase of the negative drain bias. For the Schottky-drain HEMT, the buffer leakage is suppressed effectively by the formation of the depletion region at the drain terminal. As a result, the reverse BV is enhanced from -5 V to -49 V by using a Schottky drain. Experiments and the simulation indicate that a Schottky drain is desirable for power electronic applications.
基金Supported by the National Basic Research Program of China under Grant No 2010CB327500the National Natural Science Foundation of China under Grant Nos 60976059 and 60890191.
文摘The effects of varying layout geometries and various thermal boundary resistances(TBRs)on the thermal resistance of multi-finger AlGaN/GaN HEMTs are thoroughly investigated using a combination of a two-dimensional electro-thermal model coupled with the three-dimensional thermal model.Temperature measurement using micro-Raman thermography is performed to verify and enhance the accuracy of the thermal model.Simulation results indicate that thermal resistance weakly depends on the layout design because of the high thermal conductivity of SiC.Meanwhile,the analysis reveals that optimizing the TBR of the device could efficiently reduce the thermal resistance since TBR takes a significant proportion of the total thermal resistance.
基金Project supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91433112)the National Natural Science Foundation of China(Grant No.51672163)the Key Laboratory of Functional Crystal Materials and Device(Shandong University,Ministry of Education),China(Grant No.JG1401)
文摘The photoluminescence(PL) and electrical properties of Al GaN/GaN high electron mobility transistors(HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low Fe doping concentrations,the introduction of Fe atoms can result in a downward shift of the Fermi level in the GaN buffer layer, since the Fe atoms substitute Ga and introduce an FeGa^3+/2+ acceptor level. This results in a decrease in the yellow luminescence(YL) emission intensity accompanied by the appearance of an infrared(IR) emission, and a decrease in the off-state buffer leakage current(BLC). However, a further increase in the Fe doping concentration will conversely result in the upward shift of the Fermi level due to the incorporation of O donors under the large flow rate of the Fe source. This results in an increased YL emission intensity accompanied by a decrease in the IR emission intensity, and an increase in the BLC. The intrinsic relationship between the PL and BLC characteristics is expected to provide a simple and effective method to understand the variation of the electrical characteristic in the modulation Fe-doped HEMTs by optical measurements.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0402900)the National Natural Science Foundation of China(Grant No.61634002)+1 种基金the Scientific Research Foundation of Graduate School of Nanjing University,China(Grant No.2016CL03)the Key Project of Jiangsu Province,China(Grant No.BE2016174)
文摘We investigate the negative transconductance effect in p-GaN gate AlGaN/GaN high-electron-mobility transistor(HEMT) associated with traps in the unintentionally doped GaN buffer layer. We find that a negative transconductance effect occurs with increasing the trap concentration and capture cross section when calculating transfer characteristics.The electron tunneling through AlGaN barrier and the reduced electric field discrepancy between drain side and gate side induced by traps are reasonably explained by analyzing the band diagrams, output characteristics, and the electric field strength of the channel of the devices under different trap concentrations and capture cross sections.
文摘AlGaN/GaN high electron mobility transistors(HEMTs)are grown on 2-inch Si(111)substrates by MOCVD.The stacked AlGaN/AlN interlayer with different AlGaN thickness and indium surfactant doped is designed and optimized to relieve the tensile stress during GaN epitaxial growth.The top 1.0μm GaN buffer layer grown on the optimized AlGaN/AlN interlayer shows a crack-free and shining surface.The XRD results show that GaN(002)FWHM is 480arcsec and GaN(102)FWHM is 900arcsec.The AGaN/GaN HEMTs with optimized and nonoptimized AlGaN/AlN interlayer are grown and processed for comparison and the dc and rf characteristics are characterized.For the dc characteristics of the device with optimized AlGaN/AlN interlayer,maximum drain current density I_(dss)of 737mA/mm,peak transconductance G_(m)of 185mS/mm,drain leakage current density Ids of 1.7μA/mm,gate leakage current density I_(gs)of 24.8μA/mm and off-state breakdown voltage VBR of 67V are achieved with L_(g)/W_(g)/L_(g)/L_(g)=1/10/1/1μm.For the small signal rf characteristics of the device with optimized AlGaN/AlN interlayer,current gain cutoff frequency fT of 8.3 GHz and power gain cutoff frequency fmax of 19.9GHz are achieved with L_(g)/W_(g)/L_(g)/L_(g)=1/100/1/1μm.Furthermore,the best rf performance with fT of 14.5 GHz and fmax of 37.3 GHz is achieved with a reduced gate length of 0.7μm.