期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非光滑强凸情形Adam型算法的最优收敛速率 被引量:3
1
作者 陇盛 陶蔚 +1 位作者 张泽东 陶卿 《电子学报》 EI CAS CSCD 北大核心 2022年第9期2049-2059,共11页
对于非光滑强凸问题,在线梯度下降(Online Gradient Decent,OGD)取适当步长参数可以得到对数阶后悔界.然而,这并不能使一阶随机优化算法达到最优收敛速率.为解决这一问题,研究者通常采取两种方案:其一是改进算法本身,另一种是修改算法... 对于非光滑强凸问题,在线梯度下降(Online Gradient Decent,OGD)取适当步长参数可以得到对数阶后悔界.然而,这并不能使一阶随机优化算法达到最优收敛速率.为解决这一问题,研究者通常采取两种方案:其一是改进算法本身,另一种是修改算法输出方式.典型的Adam(Adaptive moment estimation)型算法SAdam(Strongly convex Adaptive moment esti⁃mation)采用了改进算法的方式,并添加了自适应步长策略和动量技巧,虽然得到更好的数据依赖的后悔界,但在随机情形仍然达不到最优.针对这个问题,本文改用加权平均的算法输出方式,并且重新设计与以往算法同阶的步长超参数,提出了一种名为WSAdam(Weighted average Strongly convex Adaptive moment estimation)的Adam型算法.证明了WSAdam达到了非光滑强凸问题的最优收敛速率.经过Reddi问题的测试和在非光滑强凸函数优化中的实验,验证了所提方法的有效性. 展开更多
关键词 非光滑 强凸优化 自适应步长 动量方法 adam型算法 加权平均 收敛速率
在线阅读 下载PDF
基于二叉树型卷积神经网络信息融合的人脸验证 被引量:6
2
作者 杨子文 曾上游 杨远飞 《计算机应用》 CSCD 北大核心 2017年第A02期155-159,共5页
近年来卷积神经网络(CNN)在人脸识别领域有着显著的进步,但是这些卓越的方法是建立在大规模数据、更深和更宽的网络、复杂的算法的基础之上,而且还需要长时间的训练。为此结合深度残差网络提出了一个二叉树型信息融合网络模型。首先,在... 近年来卷积神经网络(CNN)在人脸识别领域有着显著的进步,但是这些卓越的方法是建立在大规模数据、更深和更宽的网络、复杂的算法的基础之上,而且还需要长时间的训练。为此结合深度残差网络提出了一个二叉树型信息融合网络模型。首先,在CNN的每个卷积层的输出特征图后引出两个卷积分支,产生两组特征图,再与父节点的一组特征相融合,然后通过激励函数输出。这种分支的融合可以使特征图的数量降低,在向前传播的过程中减少一定的信息冗余,而且也减少了网络参数的数量。第二,网络设计中通过随机翻转、随机裁剪、添加高斯噪声来增强数据,在算法优化阶段采用适应性动量估计法(Adam)以更快达到最优结果。实验结果表明,该方法在只有6.7万张的人脸数据集上达到野外标记的人脸(LFW)数据集上95.5%的正确率。所提算法在较少数据量、简单操作上取得较好的性能。 展开更多
关键词 卷积神经网络 人脸识别 信息融合 深度残差网络 适应性动量估计法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部