针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器...针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器故障诊断技术。首先,针对不平衡样本数据集利用安全级别合成少数过采样技术(safelevel synthetic minority over-sampling technique,Safe-Level SMOTE)对原始的变压器故障样本集进行了数据扩充,然后利用核主成分分析(kernel principal component analysis,K-PCA)算法对比值化后的油色谱数据进行故障特征优化提取。其次在北方苍鹰优化算法(northern goshawk optimization,NGO)中融合了正余弦和折射反向学习策略,利用测试函数验证该算法的稳定性和利用SCNGO优化算法提高其寻优能力。最后通过实际的对未扩充样本诊断和其他方法诊断进行对比分析,结果证明该方法能够有效地提高变压器故障诊断的性能。展开更多