期刊文献+
共找到5,068篇文章
< 1 2 250 >
每页显示 20 50 100
船海学术语篇摘要中名词词组形式表征的认知分析——以“Classifier +Thing”为例
1
作者 田苗 张宇新 《山东外语教学》 北大核心 2025年第3期19-29,共11页
“Classifier+Thing”结构在船海学术语篇摘要中俯拾皆是,其认知路径和理据亟待深入探究。本研究聚焦“Classifier+Thing”名词词组,分析船海学术语篇摘要中该词组的认知路径及理据。研究发现:(1)“Classifier+Thing”在概念结构-语义... “Classifier+Thing”结构在船海学术语篇摘要中俯拾皆是,其认知路径和理据亟待深入探究。本研究聚焦“Classifier+Thing”名词词组,分析船海学术语篇摘要中该词组的认知路径及理据。研究发现:(1)“Classifier+Thing”在概念结构-语义层的认知过程体现了语法转喻机制,船海摘要语料库中主要通过“过程-动作”“过程-结果”“用途-结构”实现概念结构-语义间的动、静态转换;(2)“Classifier+Thing”的形式表征过程为先确定“核心词(Thing)”,后在大脑词库中匹配“类别语(Classifier)”,遵循认知经济性原则;(3)该词组形式表征过程受学术语篇类型影响,遵循受限语言说。研究结果一定程度上深化了对学术语篇中名词词组的认识,提升学界对于船海学科学术话语的关注。 展开更多
关键词 classifier+Thing” 认知路径及理据 学术摘要 名词词组
在线阅读 下载PDF
Naive Bayesian Classifier在遥感影像分类中的应用研究 被引量:4
2
作者 陶建斌 舒宁 沈照庆 《遥感信息》 CSCD 2009年第2期52-56,共5页
将Naive Bayesian Classifier(简单贝叶斯网络分类器)用于遥感影像的分类,并对其主要问题如特征选择和后验概率推理等展开研究。使用K2结构学习算法选出具有类别可分性的波段,进一步利用互信息测试对遥感波段之间的相关性做分析,去除冗... 将Naive Bayesian Classifier(简单贝叶斯网络分类器)用于遥感影像的分类,并对其主要问题如特征选择和后验概率推理等展开研究。使用K2结构学习算法选出具有类别可分性的波段,进一步利用互信息测试对遥感波段之间的相关性做分析,去除冗余信息。特征(波段)的条件独立性假设简化了联合概率的计算,以较小的计算代价获得后验概率。在此基础上,将Naive Bayesian Classifier用于多光谱和高光谱影像的分类,获得很好的性能和相当高的稳健性。 展开更多
关键词 贝叶斯网络 简单贝叶斯网络分类器 互信息 条件独立性假设 遥感影像 分类
在线阅读 下载PDF
Effect of rotor cage rotary speed on classification accuracy in turbo air classifier 被引量:13
3
作者 高利苹 于源 刘家祥 《化工学报》 EI CAS CSCD 北大核心 2012年第4期1056-1062,共7页
在线阅读 下载PDF
Dynamic weighted voting for multiple classifier fusion:a generalized rough set method 被引量:9
4
作者 Sun Liang Han Chongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期487-494,共8页
To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ... To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV). 展开更多
关键词 multiple classifier fusion dynamic weighted voting generalized rough set hyperspectral.
在线阅读 下载PDF
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
5
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 Face recognition Support vector machine Nearest neighbor classifier Principal component analysis.
在线阅读 下载PDF
Support vector classifier based on principal component analysis 被引量:1
6
作者 Zheng Chunhong Jiao Licheng Li Yongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期184-190,共7页
Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dim... Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively. 展开更多
关键词 support vector classifier principal component analysis feature selection genetic algorithms
在线阅读 下载PDF
Application of reflux classifier with closely spaced inclined channels in pre-concentrate process of fine antimony oxide particles 被引量:2
7
作者 LIU Zhen-qiang LU Dong-fang +3 位作者 WANG Yu-hua CHU Hao-ran ZHENG Xia-yu CHEN Fu-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第11期3290-3301,共12页
In this work,the reflux classifier with closely spaced inclined channels is used as the pre-concentration facility to improve the separation efficiency before the shaking table separation.Three operating parameters of... In this work,the reflux classifier with closely spaced inclined channels is used as the pre-concentration facility to improve the separation efficiency before the shaking table separation.Three operating parameters of reflux classifier(RC)to pre-concentrate fine(0.023−0.15 mm)tailings of antimony oxide were optimized by response surface methodology(RSM)using a three-level Box-Behnken design(BBD).The parameters studied for the optimization were feeding speed,underflow,and ascending water speed.Second-order response functions were produced for the Sb grade and recovery rate of the concentrate.Taking advantage of the quadratic programming,when the factors of feeding,underflow and ascending water are respectively 225,30 and 133 cm^3/min,a better result can be achieved for the concentrate grade of 2.31% and recovery rate of 83.17%.At the same time,70.48% of the tailings with the grade of 0.20% were discarded out of the feeding.The results indicated that the reflux classifier has a good performance in dealing with fine tailings of antimony oxide.Moreover,second-order polynomial equations,ANOVA,and three-dimensional surface plots were developed to evaluate the effects of each parameter on Sb grade and recovery rate of the concentrate. 展开更多
关键词 reflux classifier antimony oxide PRE-CONCENTRATION inclined channels
在线阅读 下载PDF
Tracking performance of large margin classifier in automatic modulation classification with a software radio environment 被引量:1
8
作者 Hamidreza Hosseinzadeh 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期735-741,共7页
Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin c... Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes. 展开更多
关键词 automatic modulation classification (AMC) tracking performance evaluation passive-aggressive (PA) classifier self- training cognitive radio (CR).
在线阅读 下载PDF
Adaptive target and jamming recognition for the pulse doppler radar fuze based on a time-frequency joint feature and an online-updated naive bayesian classifier with minimal risk 被引量:9
9
作者 Jian Dai Xin-hong Hao +2 位作者 Ze Li Ping Li Xiao-peng Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期457-466,共10页
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed... This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF. 展开更多
关键词 Pulse Doppler radar fuze(PDRF) Target and jamming recognition Time-frequency joint feature Online-update naive Bayesian classifier minimal risk(ONBCMR)
在线阅读 下载PDF
Construction of unsupervised sentiment classifier on idioms resources 被引量:2
10
作者 谢松县 王挺 《Journal of Central South University》 SCIE EI CAS 2014年第4期1376-1384,共9页
Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is hig... Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is highly valuable for both research and practical applications. The focuses were put on the difficulties in the construction of sentiment classifiers which normally need tremendous labeled domain training data, and a novel unsupervised framework was proposed to make use of the Chinese idiom resources to develop a general sentiment classifier. Furthermore, the domain adaption of general sentiment classifier was improved by taking the general classifier as the base of a self-training procedure to get a domain self-training sentiment classifier. To validate the effect of the unsupervised framework, several experiments were carried out on publicly available Chinese online reviews dataset. The experiments show that the proposed framework is effective and achieves encouraging results. Specifically, the general classifier outperforms two baselines(a Na?ve 50% baseline and a cross-domain classifier), and the bootstrapping self-training classifier approximates the upper bound domain-specific classifier with the lowest accuracy of 81.5%, but the performance is more stable and the framework needs no labeled training dataset. 展开更多
关键词 sentiment analysis sentiment classification bootstrapping idioms general classifier domain-specific classifier
在线阅读 下载PDF
Multi-source Fuzzy Information Fusion Method Based on Bayesian Optimal Classifier 被引量:8
11
作者 SU Hong-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第3期282-287,共6页
为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合... 为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合理论的进化,含糊的集合也是嵌入的进它产生含糊的贝叶斯的最佳的分类器。它能同时从积极、反向的方向模仿模糊信息的双重的特征。进一步,贝叶斯的最佳的分类器也是的集合对从积极、反向、不确定的方面就模糊信息的三方面的特征而言求婚了。最后,一个知识库的人工的神经网络(KBANN ) 被介绍认识到贝叶斯的最佳的分类器的自动推理。它不仅减少贝叶斯的最佳的分类器的计算费用而且改进它学习质量的分类。 展开更多
关键词 模糊信息 混合方法 贝叶斯最佳分类器 自动推理 神经网络
在线阅读 下载PDF
GRMP协议中Classifier动态加载的实现
12
作者 李然 王伟明 《计算机应用研究》 CSCD 北大核心 2005年第5期176-178,共3页
介绍了通用路由器管理协议GRMP(GeneralRouterManagementProtocol)和GRMP控制结构。通过对规则的描述方法、分类算法、Linux下的模块机制和软中断等技术细节的深入分析,详细阐述了GRMP协议中Clas sifier(分类器)在Linux下动态加载的实... 介绍了通用路由器管理协议GRMP(GeneralRouterManagementProtocol)和GRMP控制结构。通过对规则的描述方法、分类算法、Linux下的模块机制和软中断等技术细节的深入分析,详细阐述了GRMP协议中Clas sifier(分类器)在Linux下动态加载的实现过程。 展开更多
关键词 FORCES GRMP 分类器 模块 软中断
在线阅读 下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
13
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
在线阅读 下载PDF
Numeral Classifiers in Chinese:The Syntax-Semantics Interface评介
14
作者 苑晓鹤 《北京第二外国语学院学报》 2018年第6期110-122,共13页
关于汉语数量结构的研究成果颇丰,主要有两种观点,第一种观点以Cheng&Sybesma(1998/2005)的count classifiers和mass classifiers的区分为代表,第二种观点以Rothstein(2009/2010)、李旭平(2013)的classifiers of counting和classifi... 关于汉语数量结构的研究成果颇丰,主要有两种观点,第一种观点以Cheng&Sybesma(1998/2005)的count classifiers和mass classifiers的区分为代表,第二种观点以Rothstein(2009/2010)、李旭平(2013)的classifiers of counting和classifiers of measure的区分为代表。本文介绍李旭平2013年出版的Numeral Classifiers in Chinese:The Syntax-Semantics Interface一书,介绍其汉语计数量词与计量量词的理论,并作简要评价。 展开更多
关键词 数量结构 个体量词 非个体量词 计数 计量
在线阅读 下载PDF
Online Learning a Binary Classifier for Improving Google Image Search Results 被引量:1
15
作者 WAN Yu-Chai LIU Xia-Bi HAN Fei-Fei TONG Kun-Qi LIU Yu 《自动化学报》 EI CSCD 北大核心 2014年第8期1699-1708,共10页
关键词 搜索结果 在线学习 二元分类 贝叶斯分类器 算法框架 训练数据 图片 支持向量机
在线阅读 下载PDF
基于卷积神经网络组合算法的卷烟牌号在线分类识别研究 被引量:1
16
作者 李石头 廖付 +8 位作者 吴继忠 张军 徐梦瑶 丁伟 李永生 李淑彪 何文苗 王辉 毕一鸣 《分析测试学报》 北大核心 2025年第3期514-520,共7页
为探究烟丝在线近红外光谱与卷烟牌号间的关系,提出了一种基于ResNeXt18-CNN-LightGBM混合模型的卷烟牌号分类识别方法。首先对采集的烟丝样本在线光谱数据进行预处理,并利用ResNeXt18网络模型对预处理后的光谱进行初次特征提取。然后... 为探究烟丝在线近红外光谱与卷烟牌号间的关系,提出了一种基于ResNeXt18-CNN-LightGBM混合模型的卷烟牌号分类识别方法。首先对采集的烟丝样本在线光谱数据进行预处理,并利用ResNeXt18网络模型对预处理后的光谱进行初次特征提取。然后将提取后的特征输入自定义的3层卷积神经(CNN)网络模型中,进行二次特征提取。最后将CNN提取的特征代入LightGBM分类器进行牌号分类训练。结果表明,ResNeXt18-CNN-LightGBM模型中烟丝牌号分类的准确率达97%。相较于传统的单个化学计量学算法,该文提出的基于卷积神经网络组合算法的卷烟牌号分类识别方法简单易行、准确性高、稳定性好,可应用于卷烟工业生产中卷烟牌号的在线识别,对卷烟品牌管理、生产质量评价及卷烟质量管控具有重要意义。 展开更多
关键词 在线近红外光谱 卷烟牌号 ResNeXt18 LightGBM 分类效果
在线阅读 下载PDF
责任政治:党建引领社区分类治理的行动逻辑 被引量:2
17
作者 郝亚光 关庆华 《河南师范大学学报(哲学社会科学版)》 北大核心 2025年第1期31-39,F0002,共10页
党建引领社区分类治理是基层政治改革的新趋向,蕴藏着合法性与有效性的责任政治。本文以责任政治的“观念—结构—行动”为分析框架,结合重庆市D社区“三事分流”的实践样本,有效回应了基层党组织引领社区分类治理的行动逻辑。具体而言... 党建引领社区分类治理是基层政治改革的新趋向,蕴藏着合法性与有效性的责任政治。本文以责任政治的“观念—结构—行动”为分析框架,结合重庆市D社区“三事分流”的实践样本,有效回应了基层党组织引领社区分类治理的行动逻辑。具体而言,社区分类治理的行为过程彰显了党组织的核心地位和价值引领。以党建引领为主要手段,重构了社区分类治理的责任观念,理顺了社区多元主体的权责结构,激活了社区多元主体的责任行动;党建引领构建了社区分类治理的责任共同体,有效彰显了共识机制、责任机制和激励机制的统合作用。因此,巩固党建引领社区分类治理的实践成效,要围绕分类治理的责任行动,加强社区党组织的引领能力,以构建责任共同体为指引,激活基层党组织的责任观念,不断调适责任结构的存在样态,在激励机制的基础上,落实党建引领社区分类治理的政治责任。 展开更多
关键词 党建引领 社区 分类治理 责任政治
在线阅读 下载PDF
文化遗产保护机构档案资源分类的问题解析与体系重构——以敦煌研究院为例 被引量:2
18
作者 孙胜利 祝洁 +1 位作者 刘越男 王雪莲 《北京档案》 北大核心 2025年第1期16-22,共7页
档案资源既是文化遗产保护机构的重要资产,也是文化遗产保护和利用的关键。现有研究对文化遗产保护机构档案资源分类原理及标准的探讨相对薄弱,实践中的类别划分更较为混乱,与文化遗产领域实践运用的现实需求之间的矛盾日益突显。论文... 档案资源既是文化遗产保护机构的重要资产,也是文化遗产保护和利用的关键。现有研究对文化遗产保护机构档案资源分类原理及标准的探讨相对薄弱,实践中的类别划分更较为混乱,与文化遗产领域实践运用的现实需求之间的矛盾日益突显。论文通过对文化遗产保护机构档案资源分类现存问题进行深入分析,秉持科学性、全面性、系统性、合规性四项构建原则,结合对象分类法和职能分类法,构建了档案资源分类体系的理论框架。以敦煌研究院档案资源分类体系为例,系统阐述了其架构过程,为文化遗产保护机构档案管理的理论发展和实践应用提供指导与参考。 展开更多
关键词 文化遗产 档案资源 文化遗产本体档案 职能分类法 对象分类法
在线阅读 下载PDF
CasKDNet:基于改进DenseNet的恶意代码分类方法
19
作者 刘强 王坚 +1 位作者 路艳丽 王艺菲 《空军工程大学学报》 北大核心 2025年第4期110-119,共10页
针对现有恶意代码可视化分类模型在精度和鲁棒性方面的不足,提出一种基于改进DenseNet的恶意代码可视化分类方法CasKDNet,通过3项关键技术实现精度和鲁棒性的提升。首先,构建级联分类器结构,增强纹理相似家族的特征区分能力;其次,采用KA... 针对现有恶意代码可视化分类模型在精度和鲁棒性方面的不足,提出一种基于改进DenseNet的恶意代码可视化分类方法CasKDNet,通过3项关键技术实现精度和鲁棒性的提升。首先,构建级联分类器结构,增强纹理相似家族的特征区分能力;其次,采用KAN结构替代DenseNet网络中的多层感知机,优化特征提取过程的非线性表达能力,提升模型整体精度;最后,基于FFM图像修复算法对训练集进行数据增强,提高模型鲁棒性。在恶意代码数据集Malimg上的实验结果显示,CasKDNet模型取得99.69%的分类准确率,与现有研究方法相比具有明显性能优势。此外,在白盒攻击背景下,FGSM和I-FGSM算法对CasKDNet的攻击成功率仅为12.7%和37.5%,进一步证实了模型在防范对抗性攻击方面的有效性。 展开更多
关键词 恶意代码 级联分类器 KAN FFM算法 对抗性攻击
在线阅读 下载PDF
分类管理背景下民办学校举办者的法律地位 被引量:1
20
作者 刘永林 《河北师范大学学报(教育科学版)》 北大核心 2025年第1期32-41,共10页
党的二十大报告明确指出,坚持以人民为中心发展教育,加快建设高质量教育体系,引导规范民办教育发展。以法治思维和法治方式推进民办教育领域改革和发展是新时代教育强国建设的重要组成部分。在民办教育法律法规的分类管理深入实施阶段,... 党的二十大报告明确指出,坚持以人民为中心发展教育,加快建设高质量教育体系,引导规范民办教育发展。以法治思维和法治方式推进民办教育领域改革和发展是新时代教育强国建设的重要组成部分。在民办教育法律法规的分类管理深入实施阶段,新《民促法》关于非营利性与营利性民办学校的基本分类为举办者法律地位的探讨奠定了重要基础,也为举办者法律地位的重构和分类提供了重要契机。新《民促法》及《民促法实施条例》并未直接明确民办学校举办者的法律地位及合法权益的主要外延。当前,立足于民办学校举办者法律地位的概念界定和文献回顾,从民办学校举办者法律地位的实践逻辑入手,对非营利性、营利性民办学校的主要权利与义务以及过渡阶段民办学校的比照原则进行梳理阐述,为民办学校举办者法律地位的规范再造奠定基础,助力推动民办教育高质量发展。 展开更多
关键词 民办教育促进法 分类管理 民办学校举办者 法律地位
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部