期刊文献+
共找到391篇文章
< 1 2 20 >
每页显示 20 50 100
基于Adaboost回归的6061铝合金单点增量成形最大成形深度预测
1
作者 梁智凯 张志超 +1 位作者 胡蓝 庞秋 《材料工程》 北大核心 2025年第4期23-34,共12页
单点增量成形是一种柔性工艺,在航空航天领域有着广泛应用,尤其适用于定制化、小批量生产的构件。然而针对不同模型,适宜加工的工艺参数区间尚未明确,需要测试不同的参数。采用正交实验,进行多因素方差分析,讨论板材厚度、角度、层进量... 单点增量成形是一种柔性工艺,在航空航天领域有着广泛应用,尤其适用于定制化、小批量生产的构件。然而针对不同模型,适宜加工的工艺参数区间尚未明确,需要测试不同的参数。采用正交实验,进行多因素方差分析,讨论板材厚度、角度、层进量、进给速度和自转速度等参数对最大成形深度的影响。根据实验结果搭建基于Adaboost算法的回归模型,对6061铝合金薄板在100 mm成形直径下的成形深度进行预测。结果表明:单因素对最大成形深度的影响由大到小分别为:厚度、层进量、角度量、进给速度、自转速度,且在最快成形速度下获得的最大成形角度为70°,板料厚度为1 mm,层进量为0.2 mm,进给速度为2000 mm/min,自转速度为2000 r/min。此外,依据正交实验创建的回归模型具有高准确度,与Abaqus仿真结果及实际实验结果均对应,4组测试与仿真最大误差为4.24%,与实际成形最大误差值为-2.45%。 展开更多
关键词 单点增量成形 工艺参数 6061铝合金 adaboost算法 回归模型
在线阅读 下载PDF
基于WOA-BP-AdaBoost的爆破振动速度预测模型研究
2
作者 刘金山 《工程爆破》 北大核心 2025年第3期170-178,共9页
爆破引起地面振动是矿山生产爆破过程中最为显著的有害效应之一。为预防爆破振动引发建筑物失稳破坏和边坡滑坡,以某露天矿山生产爆破92组监测数据为例,根据灰色综合关联度识别了爆破振动速度影响因素。采用WOA优化BP神经网络的权值和... 爆破引起地面振动是矿山生产爆破过程中最为显著的有害效应之一。为预防爆破振动引发建筑物失稳破坏和边坡滑坡,以某露天矿山生产爆破92组监测数据为例,根据灰色综合关联度识别了爆破振动速度影响因素。采用WOA优化BP神经网络的权值和阈值和AdaBoost算法对BP神经网络进行集成学习的方案,构建了基于WOA-BP-AdaBoost爆破振动速度预测模型。研究结果表明:与GWO-BP、SSA-BP、WOA-BP神经网络预测模型相比,该预测模型的R 2最大为0.98。与WOA-BP预测模型相比,WOA-BP-AdaBoost预测模型的S RMSE、S MAE分别降低了42.35%、32.1%,说明引入AdaBoost算法对BP神经网络集成学习,可进一步提升WOA-BP模型的预测精度和稳定性,为爆破振动速度预测提供了新的研究思路。 展开更多
关键词 爆破振动速度 WOA BP神经网络 adaboost算法
在线阅读 下载PDF
基于地理探测器和AdaBoost算法的侏罗系煤层顶板富水性评价
3
作者 刘杰 施龙青 +2 位作者 高红星 马明 韩进 《煤炭工程》 北大核心 2025年第7期156-164,共9页
为探究影响侏罗系煤层顶板富水性的关键因素并对其富水性状况做出合理评价,以邵寨煤矿为研究对象,采用地理探测器分析岩性、构造因素及其相互作用与富水性的关联,筛选出主要影响因素,再结合AdaBoost算法对研究区富水性水平进行评价。结... 为探究影响侏罗系煤层顶板富水性的关键因素并对其富水性状况做出合理评价,以邵寨煤矿为研究对象,采用地理探测器分析岩性、构造因素及其相互作用与富水性的关联,筛选出主要影响因素,再结合AdaBoost算法对研究区富水性水平进行评价。结果表明:砂泥互层数(0.62)、砂岩等效厚度(0.45)、砂岩厚度(0.42)、砂泥比(0.31)及岩性影响指数(0.09)是研究区富水性评价的关键因素。其中砂泥互层数是侏罗系煤层顶板富水性评价的最重要因素,而构造因素对富水性的影响较弱。研究区富水性空间分布特征为:高富水性区域主要位于东北部,中等富水性区域分布在中西部及中东部小部分区域,大部分区域富水性偏低。 展开更多
关键词 富水性评价 地理探测器 adaboost算法 侏罗系煤层 水害防治
在线阅读 下载PDF
多特征Adaboost算法在多波束点云滤波中的应用
4
作者 孟凡修 《海洋测绘》 北大核心 2025年第2期19-23,共5页
为了解决传统决策树算法在多波束点云滤波中存在的过拟合和适用地形单一的问题,提出一种多特征改进型Adaboost算法。该算法首先利用点云之间的剖面特征和表面特征构建特征变量集合。再对特征集合进行定权,训练弱分类器,将多个弱分类器... 为了解决传统决策树算法在多波束点云滤波中存在的过拟合和适用地形单一的问题,提出一种多特征改进型Adaboost算法。该算法首先利用点云之间的剖面特征和表面特征构建特征变量集合。再对特征集合进行定权,训练弱分类器,将多个弱分类器合并为强分类器,并利用阶段函数确定关键参数阈值。Adaboost算法输出结果的二值性与滤波结果(水深点与非水深点)的属性契合。为验证该算法的自动化程度与分类效率,引入ID3滤波算法在多种地形进行验证分析,实验结果表明,Adaboost算法在多种地形区域存在较好的滤波效果。 展开更多
关键词 多波束点云滤波 adaboost算法 增强决策树 弱分类器 分类阈值 更新权重
在线阅读 下载PDF
基于Adaboost-INGO-HKELM的变压器故障辨识 被引量:8
5
作者 谢国民 江海洋 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期94-104,共11页
针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning ... 针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning machine, HKELM)进行训练学习,考虑到HKELM模型易受参数影响,所以利用北方苍鹰优化算法(northern goshawk optimization, NGO)对其参数进行寻优。但由于NGO收敛速度较慢,易陷入局部最优,引入切比雪夫混沌映射、择优学习、自适应t分布联合策略对其进行改进。同时为了提高模型整体的准确率,通过结合Adaboost集成算法,构建Adaboost-INGO-HKELM变压器故障辨识模型。最后,将提出的Adaboost-INGO-HKELM模型与未进行降维处理的INGO-HKELM模型、Isomap-INGO-KELM模型、Adaboost-Isomap-GWO-SVM等7种模型的测试准确率进行对比。提出的Adaboost-INGO-HKELM模型的准确率可达96%,均高于其他模型,验证了该模型对变压器故障辨识具有很好的效果。 展开更多
关键词 故障诊断 油浸式变压器 adaboost集成算法 切比雪夫混沌映射 混合核极限学习机 等度量映射
在线阅读 下载PDF
基于Adaboost算法的沉积微相自动识别--以陇东气田Q区山西组为例 被引量:4
6
作者 黄千玲 赵军龙 +1 位作者 白倩 许鉴源 《地质通报》 CAS CSCD 北大核心 2024年第4期658-666,共9页
在油气田开发中,沉积微相识别对于明确沉积背景及单砂体刻画起着重要的作用。陇东气田地质条件复杂,主力气藏深度大、产层单一,仅山1段底部产气,对于多种资料交叉共同分析沉积微相,仅依靠人工判别沉积微相,过程复杂且容易出错,很难在沉... 在油气田开发中,沉积微相识别对于明确沉积背景及单砂体刻画起着重要的作用。陇东气田地质条件复杂,主力气藏深度大、产层单一,仅山1段底部产气,对于多种资料交叉共同分析沉积微相,仅依靠人工判别沉积微相,过程复杂且容易出错,很难在沉积微相和测井数据之间建立精确的对应关系。为了充分利用测井资料,提高沉积微相划分的效率,提出一种基于Adaboost算法的沉积微相自动识别方法,为后期气田开发沉积背景及单砂体刻画提供更准确的依据。在研究中,对测井曲线进行优选,并进行预处理,运用数学统计法提取了6个特征参数作为训练的输入集,把沉积微相的类型作为训练的输出结果标签,从已解释的沉积微相数据中选取共1210组作为训练样本,其中组建的训练样本共约968组,组建测试样本242组。研究结果显示,应用该方法的训练效果和测试结果的准确性分别达到96.45%,90.4%,可以验证该方法在陇东气田Q区应用效果较好。 展开更多
关键词 沉积微相 adaboost算法 测井 自动识别 陇东气田
在线阅读 下载PDF
基于Gentle Adaboost的气密性检测系统 被引量:2
7
作者 张梓齐 耿乐陶 +4 位作者 李阳 杨正乐 郭子兴 胡敏 庄正飞 《机床与液压》 北大核心 2024年第4期86-92,共7页
差压法气密性检测易受外部因素与预设参数影响。针对问题基于集成学习建立气密性检测系统,包含传感器终端数据采集系统、人机交互界面,并用最小二乘法对传感器进行线性拟合,利用Gentle Adaboost算法寻找每轮迭代中最佳弱分类器并更新下... 差压法气密性检测易受外部因素与预设参数影响。针对问题基于集成学习建立气密性检测系统,包含传感器终端数据采集系统、人机交互界面,并用最小二乘法对传感器进行线性拟合,利用Gentle Adaboost算法寻找每轮迭代中最佳弱分类器并更新下一轮样本权重,通过集成数轮迭代中最佳弱分类器组成强分类器,对被测物的气密性能进行判断。实验结果表明:所提系统在气密性检测中的准确度、精确度与召回率皆优于传统方法与单一分类模型,准确度达到99.8%,能有效克服外部因素对检测结果的影响,提高了差压法气密性检测的准确性与稳定性。 展开更多
关键词 气密性检测 差压法 分类器 集成学习 Gentle adaboost算法
在线阅读 下载PDF
一种基于AdaBoost的SVM分类器 被引量:23
8
作者 王晓丹 孙东延 +2 位作者 郑春颖 张宏达 赵学军 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2006年第6期54-57,共4页
针对AdaBoost的分量分类器的分类精度和差异性互为矛盾、以至于该矛盾的存在降低了AdaBoost算法的分类精度和泛化性的问题,提出了一种变σ-AdaBoostRBFSVM算法,通过根据训练样本调整各个分量分类器的核函数参数值,使分量分类器在精度和... 针对AdaBoost的分量分类器的分类精度和差异性互为矛盾、以至于该矛盾的存在降低了AdaBoost算法的分类精度和泛化性的问题,提出了一种变σ-AdaBoostRBFSVM算法,通过根据训练样本调整各个分量分类器的核函数参数值,使分量分类器在精度和差异性之间达到一定的平衡,从而提高了集成分类器的分类精度和泛化性。对标准数据集的分类实验结果表明了算法的有效性。 展开更多
关键词 支持向量机 adaboost算法 分类器
在线阅读 下载PDF
一种基于类Haar特征和改进AdaBoost分类器的车辆识别算法 被引量:87
9
作者 文学志 方巍 郑钰辉 《电子学报》 EI CAS CSCD 北大核心 2011年第5期1121-1126,共6页
提出一种基于类haar特征和改进AdaBoost分类器的车辆图像识别算法,以解决当前基于SVM分类器或级联分类器存在的分类识别性能不足以及传统基于AdaBoost算法的训练所需时间过长的问题.首先,基于积分图提取图像的扩展类haar特征,然后对所... 提出一种基于类haar特征和改进AdaBoost分类器的车辆图像识别算法,以解决当前基于SVM分类器或级联分类器存在的分类识别性能不足以及传统基于AdaBoost算法的训练所需时间过长的问题.首先,基于积分图提取图像的扩展类haar特征,然后对所提取的海量类haar特征应用改进的AdaBoost分类器训练方法进行特征选择及分类器训练,最后利用所选择的特征信息及训练得到的分类器进行两类分类识别.实验结果表明,文中方法无论是在识别性能还是训练所需时间方面均明显优于传统方法,具有较好的应用前景. 展开更多
关键词 车辆识别 类HAAR特征 adaboost算法
在线阅读 下载PDF
基于RSM和BP-AdaBoost-GA的红茶发酵性能参数优化 被引量:13
10
作者 董春旺 赵杰文 +3 位作者 朱宏凯 袁海波 叶阳 陈全胜 《农业机械学报》 EI CAS CSCD 北大核心 2017年第5期335-342,共8页
为明确自行设计的滚筒式红茶发酵机性能参数,以无量纲化的综合评分为发酵品质评价指标,采用响应面法和基于改进型神经网络的遗传算法(BP-AdaBoost-GA)对影响发酵品质的3个因素(发酵温度、发酵时间、翻拌间隔)进行优化,并对2种方法的优... 为明确自行设计的滚筒式红茶发酵机性能参数,以无量纲化的综合评分为发酵品质评价指标,采用响应面法和基于改进型神经网络的遗传算法(BP-AdaBoost-GA)对影响发酵品质的3个因素(发酵温度、发酵时间、翻拌间隔)进行优化,并对2种方法的优化效果进行比较。结果表明,各因素对发酵品质的影响重要性顺序为:发酵温度、翻拌间隔、发酵时间;采用响应面法优化,当发酵温度、发酵时间、翻拌间隔分别为25℃、150 min、20 min时,综合评分预测值和实际值分别为0.863和0.856,相对误差为0.8%;而采用BP-AdaBoost-GA优化,当发酵温度、发酵时间、翻拌间隔分别为27℃、170 min、25 min时,预测值和实际值分别为0.871和0.868,相对误差为0.3%;BPAdaBoost预测模型的决定系数和相对分析误差分别为0.994和18.456,高于响应面法的0.988和9.577,且预测均方根误差较低,为0.017。在红茶发酵工艺的参数优化中,采用BP-AdaBoost-GA方法能比响应面法更好地拟合模型,以及在全局变量范围内推导最优发酵条件。 展开更多
关键词 红茶发酵 参数优化 adaboost算法 遗传算法
在线阅读 下载PDF
基于Adaboost算法的输电线路舞动预警方法 被引量:10
11
作者 李哲 王建 +2 位作者 梁允 熊小伏 翁世杰 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期32-38,97,共8页
输电线路舞动是目前尚未被全面准确认识的世界性难题,已严重威胁输电系统的安全稳定运行。文章分析影响舞动的外界气象环境因素,并在此基础上提出一种基于Adaboost集成学习算法的输电线舞动预警方法。采用基于Gini指标的决策桩作为弱分... 输电线路舞动是目前尚未被全面准确认识的世界性难题,已严重威胁输电系统的安全稳定运行。文章分析影响舞动的外界气象环境因素,并在此基础上提出一种基于Adaboost集成学习算法的输电线舞动预警方法。采用基于Gini指标的决策桩作为弱分类器,通过对多个弱分类器的训练及加权求和,输出舞动预测结果及其置信度,可为电网运维人员提供决策支撑。最后,使用历史数据进行验证性实验,结果证明了所提方法的有效性。 展开更多
关键词 输电线 舞动 预警 adaboost算法 决策桩
在线阅读 下载PDF
融合样本选择与特征选择的AdaBoost支持向量机集成算法 被引量:11
12
作者 杨宏晖 王芸 +2 位作者 孙进才 戴健 李亚安 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第12期63-68,共6页
为提高AdaBoost分类器集成算法的分类精确度并简化分类系统的复杂度,提出一种融合样本选择与特征选择的AdaBoost支持向量机集成算法(IFSelect-SVME).该算法在AdaBoost算法的每个循环中利用加权免疫克隆样本选择算法进行样本选择,并用... 为提高AdaBoost分类器集成算法的分类精确度并简化分类系统的复杂度,提出一种融合样本选择与特征选择的AdaBoost支持向量机集成算法(IFSelect-SVME).该算法在AdaBoost算法的每个循环中利用加权免疫克隆样本选择算法进行样本选择,并用互信息顺序向前特征选择算法进行特征选择,再利用每个循环优化选择得到的特征样本子集训练个体SVM分类器,并对其进行加权集成,生成最终的决策系统.对实验所用9组UCI数据集的仿真结果表明:与支持向量机集成(SVME)算法相比,IFSelect-SVME算法的正确分类率有所提高,且样本数可减少30.8%~80.0%,特征数可减少32.2%~81.5%,简化了集成结构,缩短了测试样本的分类时间,所得到的分类系统具有更好的分类精度. 展开更多
关键词 分类器集成 adaboost算法 支持向量机 样本选择 特征选择
在线阅读 下载PDF
基于支持向量机的无穷维AdaBoost算法及其应用 被引量:14
13
作者 刘冲 张均东 +2 位作者 曾鸿 任光 纪玉龙 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第4期764-769,共6页
AdaBoost算法能够集成比随机猜测略好的弱分类器,输出较高分类精度的强分类器。为了进一步提高AdaBoost算法的分类精度,建立了一种基于支持向量机的无穷维AdaBoost算法,实现无穷维AdaBoost算法的关键是建立一个新的支持向量机核函数,使... AdaBoost算法能够集成比随机猜测略好的弱分类器,输出较高分类精度的强分类器。为了进一步提高AdaBoost算法的分类精度,建立了一种基于支持向量机的无穷维AdaBoost算法,实现无穷维AdaBoost算法的关键是建立一个新的支持向量机核函数,使此核函数集成无穷多个AdaBoost算法弱分类器。将无穷维AdaBoost算法用于模拟电路故障诊断,故障诊断结果表明:无穷维AdaBoost算法分类精度优于有限维AdaBoost算法,提高了AdaBoost算法的分类精度。 展开更多
关键词 adaboost算法 支持向量机 核函数 超平面 分类精度
在线阅读 下载PDF
基于AdaBoost的链路预测优化算法 被引量:16
14
作者 吴祖峰 梁棋 +1 位作者 刘峤 秦志光 《通信学报》 EI CSCD 北大核心 2014年第3期116-123,共8页
针对当前主流的基于网络拓扑结构的链路预测算法普遍存在召回率较低的问题,研究发现一些算法输出的结果中部分正确结果具有互补性,据此采用基于Boosting的集成学习方法对其进行改进。按照网络中节点之间是否存在链接关系,将链路预测问... 针对当前主流的基于网络拓扑结构的链路预测算法普遍存在召回率较低的问题,研究发现一些算法输出的结果中部分正确结果具有互补性,据此采用基于Boosting的集成学习方法对其进行改进。按照网络中节点之间是否存在链接关系,将链路预测问题定义为二分类问题,进一步遵循算法互补的原则选择若干具有代表性的链路预测算法作为弱分类器,基于AdaBoost算法提出并实现了一个新型链路预测算法。在arXiv论文合作网络和电子邮件网络等真实数据集上的实验结果表明,该算法的准确率以及召回率表现均显著优于当前的主流算法。 展开更多
关键词 链路预测 社会网络分析 adaboost算法 推荐系统 机器学习
在线阅读 下载PDF
基于Adaboost算法的行人检测方法 被引量:16
15
作者 郭烈 王荣本 +1 位作者 张明恒 金立生 《计算机工程》 CAS CSCD 北大核心 2008年第3期202-204,共3页
鉴于Adaboost算法简单可靠、学习精度高的特点,提出一种基于Adaboost算法的行人实时检测方法。选取了扩展的类Haar特征,采用Adaboost算法训练得到了一个识别准确率理想的行人分类器,通过VC编程将级联分类器应用到实际的行人检测系统中... 鉴于Adaboost算法简单可靠、学习精度高的特点,提出一种基于Adaboost算法的行人实时检测方法。选取了扩展的类Haar特征,采用Adaboost算法训练得到了一个识别准确率理想的行人分类器,通过VC编程将级联分类器应用到实际的行人检测系统中。试验结果表明,该方法可以快速、准确地实现行人的在线检测,具有较好的实时性。 展开更多
关键词 行人检测 安全辅助驾驶 adaboost算法 类HAAR特征
在线阅读 下载PDF
基于随机子空间和AdaBoost的自适应集成方法 被引量:14
16
作者 姚旭 王晓丹 +1 位作者 张玉玺 邢雅琼 《电子学报》 EI CAS CSCD 北大核心 2013年第4期810-814,共5页
如何构造差异性大且精确度高的基分类器是集成学习的重点,为此提出一种新的集成学习方法——利用PSO寻找使得AdaBoost依样本权重抽取的数据集分类错误率最小化的最优特征权重分布,依据此最优权重分布对特征随机抽样生成随机子空间,并应... 如何构造差异性大且精确度高的基分类器是集成学习的重点,为此提出一种新的集成学习方法——利用PSO寻找使得AdaBoost依样本权重抽取的数据集分类错误率最小化的最优特征权重分布,依据此最优权重分布对特征随机抽样生成随机子空间,并应用于AdaBoost的训练过程中.这就在增加分类器间差异性的同时保证了基分类器的准确度.最后用多数投票法融合各基分类器的决策结果,并通过仿真实验验证该方法的有效性. 展开更多
关键词 集成学习 随机子空间 adaboost算法 粒子群优化
在线阅读 下载PDF
基于Adaboost算法的车内噪声声品质预测 被引量:13
17
作者 黄海波 李人宪 +2 位作者 黄晓蓉 杨明亮 丁渭平 《汽车工程》 EI CSCD 北大核心 2016年第9期1120-1125,共6页
对匀速工况下车内噪声信号分别进行主观评价与客观参量计算,并对主、客观评价结果进行了相关分析。在此基础上,基于Adaboost算法并结合BP神经网络、极限学习机(ELM)和支持向量机(SVM)建立了声品质预测模型,并将其预测结果与经过遗传算法... 对匀速工况下车内噪声信号分别进行主观评价与客观参量计算,并对主、客观评价结果进行了相关分析。在此基础上,基于Adaboost算法并结合BP神经网络、极限学习机(ELM)和支持向量机(SVM)建立了声品质预测模型,并将其预测结果与经过遗传算法(GA)参数优化后的GA-BP,GA-ELM和GA-SVM预测模型进行了对比。结果表明:基于Adaboost算法的车内噪声声品质预测模型效果最优,提升了声品质预测的准确度。 展开更多
关键词 车内噪声 声品质 adaboost算法 BP神经网络 极限学习机 支持向量机
在线阅读 下载PDF
基于渐近式权值小波降噪和Adaboost算法的液压泵故障诊断 被引量:8
18
作者 李胜 张培林 +1 位作者 吴定海 徐超 《中国机械工程》 EI CAS CSCD 北大核心 2011年第9期1067-1070,1075,共5页
为了解决液压泵早期故障诊断难的问题,提出了一种基于渐近式权值小波降噪和Adaboost算法的液压泵故障诊断方法。针对早期故障特征难以有效提取的问题,根据最优化理论,通过对传统小波分析方法得到的信号进行渐近式权值的选择,得到了信噪... 为了解决液压泵早期故障诊断难的问题,提出了一种基于渐近式权值小波降噪和Adaboost算法的液压泵故障诊断方法。针对早期故障特征难以有效提取的问题,根据最优化理论,通过对传统小波分析方法得到的信号进行渐近式权值的选择,得到了信噪比较好的降噪信号,并从中选取了最优特征集。同时,针对神经网络过学习和欠学习的现象,采用Adaboost算法对最优特征进行训练,实现了对不同故障类型的识别。实验结果表明,渐近式权值小波降噪能有效地去除噪声,提高信噪比,较为有效地提取最优故障特征;与BP神经网络相比,Adaboost算法具有更高的故障识别精度。 展开更多
关键词 小波降噪 权值 adaboost算法 故障诊断
在线阅读 下载PDF
R-AdaBoost带钢表面缺陷特征选择算法 被引量:14
19
作者 刘坤 赵帅帅 +1 位作者 屈尔庆 周颖 《电子测量与仪器学报》 CSCD 北大核心 2017年第1期9-14,共6页
带钢表面缺陷形式的复杂多变给特征的选择带来了困难,为此,提出一种融合特征筛选和样本权值更新的R-Ada Boost特征选择算法。该算法在Ada Boost算法的每个循环中通过Relief算法进行特征的筛选与降维,通过筛选后的特征利用样本的类内类... 带钢表面缺陷形式的复杂多变给特征的选择带来了困难,为此,提出一种融合特征筛选和样本权值更新的R-Ada Boost特征选择算法。该算法在Ada Boost算法的每个循环中通过Relief算法进行特征的筛选与降维,通过筛选后的特征利用样本的类内类间差去除噪声样本,然后根据Ada Boost的动态权值更新样本库,再利用每个循环优化选择得到的最优特征与弱分类器级联成最终的Ada Boost强分类器,进行带钢表面缺陷的检测与定位。实验结果表明,针对带钢实际生产线上的划痕、褶皱、山脉、污点等多种缺陷,该算法可以有效提取出具有高区分性和独立性的特征,同时提高了缺陷检测算法的准确率。 展开更多
关键词 adaboost算法 Relief特征筛选 特征选择 缺陷检测
在线阅读 下载PDF
基于二叉树和Adaboost算法的纸币号码识别 被引量:13
20
作者 潘虎 陈斌 李全文 《计算机应用》 CSCD 北大核心 2011年第2期396-398,共3页
运用一种快速弱分类器训练算法和高速缓存策略来加速Adaboost算法的训练。集成学习算法Adaboost能够精确构建二分类器,运用二叉树型结构快速灵活地将纸币号码识别转化为一系列的Adaboost二分类问题。实验结果证明,快速Adaboost训练算法... 运用一种快速弱分类器训练算法和高速缓存策略来加速Adaboost算法的训练。集成学习算法Adaboost能够精确构建二分类器,运用二叉树型结构快速灵活地将纸币号码识别转化为一系列的Adaboost二分类问题。实验结果证明,快速Adaboost训练算法能加快训练速度,基于二叉树和Adaboost的纸币号码识别系统具有较好的识别率和处理速度,已经应用在点钞机、清分机和ATM中。 展开更多
关键词 adaboost算法 快速adaboost算法 二叉树 号码识别
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部