针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器...针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器故障诊断技术。首先,针对不平衡样本数据集利用安全级别合成少数过采样技术(safelevel synthetic minority over-sampling technique,Safe-Level SMOTE)对原始的变压器故障样本集进行了数据扩充,然后利用核主成分分析(kernel principal component analysis,K-PCA)算法对比值化后的油色谱数据进行故障特征优化提取。其次在北方苍鹰优化算法(northern goshawk optimization,NGO)中融合了正余弦和折射反向学习策略,利用测试函数验证该算法的稳定性和利用SCNGO优化算法提高其寻优能力。最后通过实际的对未扩充样本诊断和其他方法诊断进行对比分析,结果证明该方法能够有效地提高变压器故障诊断的性能。展开更多
针对铣刀磨损量预测时精度低的问题,提出一种基于黑寡妇算法(BWO)优化的长短期记忆神经网络(LSTM)与AdaBoost集成学习算法相结合的铣刀磨损量预测方法。在铣刀磨损振动信号中提取时域、频域以及时频域多域特征。通过BWO算法优化LSTM的...针对铣刀磨损量预测时精度低的问题,提出一种基于黑寡妇算法(BWO)优化的长短期记忆神经网络(LSTM)与AdaBoost集成学习算法相结合的铣刀磨损量预测方法。在铣刀磨损振动信号中提取时域、频域以及时频域多域特征。通过BWO算法优化LSTM的核心参数,并将优化后的LSTM网络与AdaBoost算法进行结合,构建铣刀磨损量预测模型。最后用PHM Society 2010铣刀全寿命周期的振动数据进行实验。研究结果表明:所提方法能够有效地预测出铣刀磨损量变化值,优化后模型的平均绝对误差百分比为3.436%、均方根误差为6.471、决定系数R^(2)为0.935。该方法能够获得准确率更高的铣刀磨损量预测值,预测效率更高。展开更多
Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of it...Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of its seri-als-AdaBoost,analyzes the typical algorithms of AdaBoost.展开更多
文摘针对铣刀磨损量预测时精度低的问题,提出一种基于黑寡妇算法(BWO)优化的长短期记忆神经网络(LSTM)与AdaBoost集成学习算法相结合的铣刀磨损量预测方法。在铣刀磨损振动信号中提取时域、频域以及时频域多域特征。通过BWO算法优化LSTM的核心参数,并将优化后的LSTM网络与AdaBoost算法进行结合,构建铣刀磨损量预测模型。最后用PHM Society 2010铣刀全寿命周期的振动数据进行实验。研究结果表明:所提方法能够有效地预测出铣刀磨损量变化值,优化后模型的平均绝对误差百分比为3.436%、均方根误差为6.471、决定系数R^(2)为0.935。该方法能够获得准确率更高的铣刀磨损量预测值,预测效率更高。
文摘Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of its seri-als-AdaBoost,analyzes the typical algorithms of AdaBoost.