室内定位技术在多领域有着重要的应用,而传统的无线局域网(Wireless Local Area Network,WLAN)指纹定位方法通常很少考虑WLAN接收信号强度(Received Signal Strength,RSS)特征的多样性以及来自不同接入点(Access Point,AP)的RSS特征位...室内定位技术在多领域有着重要的应用,而传统的无线局域网(Wireless Local Area Network,WLAN)指纹定位方法通常很少考虑WLAN接收信号强度(Received Signal Strength,RSS)特征的多样性以及来自不同接入点(Access Point,AP)的RSS特征位置分辨力的差异性问题,从而导致WLAN定位精度不高且定位效率较低.对此,本文提出一种基于多维模糊映射AP优化的WLAN室内定位方法.在离线阶段通过多次采集RSS数据提取多维RSS特征,计算AP信息增益比及相应的离线模糊隶属度,并利用模糊关系方程求解多维RSS特征模糊权重;而在在线阶段,则通过多维模糊映射构造模糊判定矩阵并计算AP在线模糊隶属度,同时结合K近邻(K-Nearest Neighbor,KNN)算法完成对目标的位置坐标计算.实验结果表明,相较于传统的AP优化定位方法,所提方法在线阶段的定位计算开销最高减少了4.12 s,定位误差4 m内的置信概率为91.91%.展开更多
在不均匀光照条件下,光伏阵列输出特性呈现多峰现象,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法容易陷入局部极值。为了提高复杂阴影下的跟踪速度和跟踪精度,结合改进粒子群算法(improved particle swarm optimizati...在不均匀光照条件下,光伏阵列输出特性呈现多峰现象,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法容易陷入局部极值。为了提高复杂阴影下的跟踪速度和跟踪精度,结合改进粒子群算法(improved particle swarm optimization,IPSO)和自适应步长扰动观察法(adaptive perturbation and observation,AP&O)各自的特点,提出了基于IPSO-AP&O算法的改进MPPT控制方法。其中,IPSO算法采用自适应惯性权重因子,在不同搜索阶段能够充分搜索目标函数,然后与AP&O算法结合实现最大功率的稳定输出。仿真结果表明,所提出的IPSO-AP&O算法减少了传统智能算法的迭代过程,能快速跟踪到全局最大功率点,相比其余几种算法而言,在光照强度突变时均具备快速精准的双重跟踪能力,在4种场景下跟踪效率分别为99.86%、99.91%、87.63%、99.79%,能够更好地减小光伏阵列外部条件变化导致的功率损耗,所提出的MPPT控制方法能够较好地适用于光储混合系统,具备工程实用价值。展开更多
无线局域网(WLAN)中可以对无线接入点(Access Point,AP)进行定位。该文提出一种基于概率密度的AP定位算法(Probability Density algorithm for Access Point Localization,PDAPL)。首先对实验区域进行分区;然后根据定向天线在不同位置...无线局域网(WLAN)中可以对无线接入点(Access Point,AP)进行定位。该文提出一种基于概率密度的AP定位算法(Probability Density algorithm for Access Point Localization,PDAPL)。首先对实验区域进行分区;然后根据定向天线在不同位置和不同角度收到的信号强度,计算AP落在各区域的概率,形成与密度有关的概率统计表;最后对AP的位置进行评估。实验结果表明,该文提出的算法采集数据少,只需在少量点和少量角度采集信号就可以得到较高的定位精度。与Driveby Loc,Distance和Ao A相比,得到相同的定位精度PDAPL所需要的测量点和测量角度只是Driveby Loc的一半左右,比Distance和Ao A所需要的更少;测量点和测量角度数量相同时,PDAPL的定位精度相对于Driveby Loc提升了50%左右。展开更多
文摘室内定位技术在多领域有着重要的应用,而传统的无线局域网(Wireless Local Area Network,WLAN)指纹定位方法通常很少考虑WLAN接收信号强度(Received Signal Strength,RSS)特征的多样性以及来自不同接入点(Access Point,AP)的RSS特征位置分辨力的差异性问题,从而导致WLAN定位精度不高且定位效率较低.对此,本文提出一种基于多维模糊映射AP优化的WLAN室内定位方法.在离线阶段通过多次采集RSS数据提取多维RSS特征,计算AP信息增益比及相应的离线模糊隶属度,并利用模糊关系方程求解多维RSS特征模糊权重;而在在线阶段,则通过多维模糊映射构造模糊判定矩阵并计算AP在线模糊隶属度,同时结合K近邻(K-Nearest Neighbor,KNN)算法完成对目标的位置坐标计算.实验结果表明,相较于传统的AP优化定位方法,所提方法在线阶段的定位计算开销最高减少了4.12 s,定位误差4 m内的置信概率为91.91%.
文摘在不均匀光照条件下,光伏阵列输出特性呈现多峰现象,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法容易陷入局部极值。为了提高复杂阴影下的跟踪速度和跟踪精度,结合改进粒子群算法(improved particle swarm optimization,IPSO)和自适应步长扰动观察法(adaptive perturbation and observation,AP&O)各自的特点,提出了基于IPSO-AP&O算法的改进MPPT控制方法。其中,IPSO算法采用自适应惯性权重因子,在不同搜索阶段能够充分搜索目标函数,然后与AP&O算法结合实现最大功率的稳定输出。仿真结果表明,所提出的IPSO-AP&O算法减少了传统智能算法的迭代过程,能快速跟踪到全局最大功率点,相比其余几种算法而言,在光照强度突变时均具备快速精准的双重跟踪能力,在4种场景下跟踪效率分别为99.86%、99.91%、87.63%、99.79%,能够更好地减小光伏阵列外部条件变化导致的功率损耗,所提出的MPPT控制方法能够较好地适用于光储混合系统,具备工程实用价值。
文摘无线局域网(WLAN)中可以对无线接入点(Access Point,AP)进行定位。该文提出一种基于概率密度的AP定位算法(Probability Density algorithm for Access Point Localization,PDAPL)。首先对实验区域进行分区;然后根据定向天线在不同位置和不同角度收到的信号强度,计算AP落在各区域的概率,形成与密度有关的概率统计表;最后对AP的位置进行评估。实验结果表明,该文提出的算法采集数据少,只需在少量点和少量角度采集信号就可以得到较高的定位精度。与Driveby Loc,Distance和Ao A相比,得到相同的定位精度PDAPL所需要的测量点和测量角度只是Driveby Loc的一半左右,比Distance和Ao A所需要的更少;测量点和测量角度数量相同时,PDAPL的定位精度相对于Driveby Loc提升了50%左右。