期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Design and simulation of an accelerometer based on NV center spin–strain coupling
1
作者 季鲁敏 赵立业 王裕海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期192-198,共7页
The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-s... The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms.In this paper,an acceleration sensing scheme based on NV spin–strain coupling is proposed,which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes.Through the finite element simulation,it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure√optimization.The required power is at the sub-μW level,corresponding to a noise-limited sensitivity of 6.7×10^(-5) /√Hz.Compared with other types of accelerometers,this micro-sized diamond sensor proposed here has low power consumption,exquisite sensitivity,and integration potential.This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields. 展开更多
关键词 nitrogen-vacancy(NV)accelerometer spin–strain DIAMOND
在线阅读 下载PDF
ATTITUDE MEASUREMENT ON HIGH-SPINNING PROJECTILE USING MAGNETIC SENSORS AND ACCELEROMETERS 被引量:5
2
作者 李玎 卜雄洙 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期106-112,共7页
In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic senso... In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic sensors and two accelerometers installed in a particular way is given. The configuration of the sensors is described. The calculation method and the mathematical model of the projectile attitude based on the sensor configuration are discussed. The basic calculation method including the Magsonde Window, the proof of the ratios of maximums and minimums and the calculation of the attitude angles are analyzed in theory. Finally, the system is simulated under the given conditions. The simulation result indicates that the estimated attitude angles are in agreement with the true attitude angles. 展开更多
关键词 PROJECTILE MAGNETOMETERS accelerometers attitude solution digital simulation
在线阅读 下载PDF
Review of micromachined optical accelerometers:from mg to sub-μg 被引量:15
3
作者 Qianbo Lu Yinan Wang +3 位作者 Xiaoxu Wang Yuan Yao Xuewen Wang Wei Huang 《Opto-Electronic Advances》 SCIE 2021年第3期1-24,共24页
Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume... Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement. 展开更多
关键词 accelerometer Micro-Opto-Electro-Mechanical Systems(MOEMS) integrated optics accelerometer review
在线阅读 下载PDF
Structural Design of a Compact in-Plane Nano-Grating Accelerometer 被引量:4
4
作者 YAO Bao-Yin ZHOU Zhen +2 位作者 FENG Li-Shuang WANG Wen-Pu WANG Xiao 《Chinese Physics Letters》 SCIE CAS CSCD 2012年第11期219-223,共5页
A combination of large mass,weak spring and nano-grating is the key for a nano-grating accelerometer to measure nano-G acceleration.A novel compact nano-grating accelerometer integrating a large mass with nano-grating... A combination of large mass,weak spring and nano-grating is the key for a nano-grating accelerometer to measure nano-G acceleration.A novel compact nano-grating accelerometer integrating a large mass with nano-grating is proposed.First,the numbers of diffraction orders are calculated.Then,structure parameters are optimized by finite element analysis to achieve a high sensitivity in an ideal vibration mode.Finally,we design the fabrication method to form such a compact nano-grating accelerometer and successfully fabricate the uniform and well-designed nano-gratings with a period of 847 nm,crater of 451 nm by an FIB/SEM dual beam system.Based on the ANSYS simulation,a nano-grating accelerometer is predicted to work in the first modal and enables the accelerometer to have displacement sensitivity at 197 nm/G with a measurement range of±1 G,corresponding to zeroth diffraction beam optical sensitivity 1%/mG.The nano-gratings fabricated are very close to those designed ones within experimental error to lay the foundation for the sequent fabrication.These results provide a theoretical basis for the design and fabrication of nano-grating accelerometers. 展开更多
关键词 accelerometer BEAM integrating
在线阅读 下载PDF
Triaxial high-gaccelerometer of microelectro mechanical systems 被引量:1
5
作者 何昫 张振海 +1 位作者 李科杰 林然 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期427-431,共5页
A triaxial high-g accelerometer of microelectro mechanical systems (MEMS) has a struc- ture of multi-chips combination and will be used in aerospace field, civil and military fields. The ac- celerometer can measure ... A triaxial high-g accelerometer of microelectro mechanical systems (MEMS) has a struc- ture of multi-chips combination and will be used in aerospace field, civil and military fields. The ac- celerometer can measure the acceleration of the carrier. The chips with island-membrane structures on its back surfaces are made by MEMS dry processing. The chip is reasonable and can work well under high impact load; Titanium alloy base is also stronger in high shock environment, these are proved by finite element analysis. Finally, the MEMS combined triaxial high-g accelerometer is vali- dated by high impact calibration experiments in order to get a key performance index, including range, sensitivity and transverse sensitivity and so on. These data can satisfy the need of design but some problems remain, these will be eliminated by improvement of the processing technology and materials. 展开更多
关键词 COMBINED finite element analysis TRIAXIAL high-g accelerometer
在线阅读 下载PDF
Vector fiber Bragg gratings accelerometer based on silicone compliant cylinder for low frequency vibration monitoring
6
作者 胡文玉 陈卓 +3 位作者 尤江山 王若晖 周锐 乔学光 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期33-39,共7页
Vector accelerometer has attracted much attention for its great application potential in underground seismic signal measurement. We propose and demonstrate a novel vector accelerometer based on the three fiber Bragg g... Vector accelerometer has attracted much attention for its great application potential in underground seismic signal measurement. We propose and demonstrate a novel vector accelerometer based on the three fiber Bragg gratings(FBGs)embedded in a silicone rubber compliant cylinder at 120° distributed uniformly. The accelerometer is capable of detecting the orientation of vibration with a range of 0°–360° and the acceleration through monitoring the central wavelength shifts of three FBGs simultaneously. The experimental results show that the natural frequency of the accelerometer is about 85 Hz, and the sensitivity is 84.21 pm/g in the flat range of 20 Hz–60 Hz. Through experimental calibration, the designed accelerometer can accurately obtain vibration vector information, including vibration orientation and acceleration. In addition, the range of resonant frequency and sensitivity can be expanded by adjusting the hardness of the silicone rubber materials. Due to the characteristics of small size and orientation recognition, the accelerometer can be applied to low-frequency vibration acceleration vector measurement in narrow spaces. 展开更多
关键词 fiber-optic sensor vector accelerometer silicone compliant cylinder orientation recognition
在线阅读 下载PDF
Design and Evaluation of a Differential Accelerometer for Drop-Tower Equivalence Principle Test with Rotating Masses
7
作者 Feng-Tian Han Tian-Yi Liu +1 位作者 Xiao-Xia He Qiu-Ping Wu 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期13-17,共5页
A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin-spin force between the rotating mass and the Earth. The measureme... A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin-spin force between the rotating mass and the Earth. The measurement is performed by placing the two concentric masses of very different momenta in a vacuum drop capsule which is falling freely in the Earth's gravitational field. A nonzero output of the differential aeeelerometer is an indication of possible violation of new equivalence principle (NEP). We present the conceptual design of a modified free-fall NEP experiment which can be performed at the Belting drop tower. Design and evaluation of the differential accelerometer with a hybrid electrostatic/magnetic suspension system are presented to accommodate for operation on ground and drop-tower tests. Details specific to the measurement uncertainty are discussed to yield an NEP test accuracy of 7.2×10^-9. 展开更多
关键词 TM Design and Evaluation of a Differential accelerometer for Drop-Tower Equivalence Principle Test with Rotating Masses NEP
在线阅读 下载PDF
A review of high-performance MEMS sensors for resource exploration and geophysical applications 被引量:3
8
作者 Hua-Feng Liu Zhi-Cai Luo +4 位作者 Zhong-Kun Hu Shan-Qing Yang Liang-Cheng Tu Ze-Bing Zhou Michael Kraft 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2631-2648,共18页
MEMS sensors have the advantages of small volume,lightweight,and low cost,therefore,have been widely used in the fields of consumer electronics,industry,health,defence,and aerospace.With their ever-improving performan... MEMS sensors have the advantages of small volume,lightweight,and low cost,therefore,have been widely used in the fields of consumer electronics,industry,health,defence,and aerospace.With their ever-improving performance,MEMS sensors have also started to be used in resource exploration and geophysical applications.However,the requirements of high-precision MEMS sensors for geophysical applications have not been specified in detail.Therefore,this paper systematically analyzes the requirements of high-performance MEMS sensors for prospecting and geophysical applications,including seismic surveillance,Earth tide,volcanic activity monitoring for natural disasters;seismic,gravity,and magnetic resource prospecting;drilling process monitoring and local gravity measurement for gravity aided navigation.Focusing on the above applications,this paper summarizes the state-of-the-art of research on high-performance MEMS sensors for resource exploration and geophysical applications.Several off-the-shelf MEMS sensors have been used for earthquake monitoring,seismic exploration and drilling process monitoring,and a range of MEMS research prototype sensors have successfully been employed for Earth tides measurement and are promising to be used for gravity exploration.MEMS magnetometers should have a lower noise floor to meet the demand for magnetic exploration.MEMS gravity gradiometers are still under early development and will not be deployable in short-term.Highperformance MEMS sensors hold the advantages of low-cost,high integration,and capability of working in extreme environments;therefore,they are likely to gradually replace some conventional geophysical instruments in some application areas. 展开更多
关键词 accelerometer SEISMOMETER GRAVIMETER Tilt-meter MAGNETOMETER
在线阅读 下载PDF
Dynamic characteristics of a switch and crossing on the West Coast main line in the UK 被引量:1
9
作者 Jou-Yi Shih Paul Weston +1 位作者 Mani Entezami Clive Roberts 《Railway Engineering Science》 2022年第2期183-203,共21页
Railway switches and crossings constitute a small fraction of linear track length but consume a large proportion of the railway track system maintenance budget.While switch and crossing(S&C)faults rarely prevent t... Railway switches and crossings constitute a small fraction of linear track length but consume a large proportion of the railway track system maintenance budget.While switch and crossing(S&C)faults rarely prevent trains from running,switches and crossings are the source of many faults and need continual attention.On the rare occasions when trains are prevented from running the cost of the disruption is very high.Condition monitoring of the point operating equipment that moves the switchblades has been in use for many years but condition monitoring of the state of the switch in terms of the support and mechanical damage as trains pass over has only recently started to become possible.To this end,it is important to understand the correlation between S&C faults and sensor data that can detect those faults.This paper assesses some of the data collected from multiple sensors variously positioned on and around a switch and crossing on the UK mainline for a few days of normal train operation.Accelerometers,geophones,and strain gauges were installed at the locations where they were anticipated to be most useful.Forces at the load transfer point on the crossing nose were estimated from two separate strain gauge bridges and possible use of acceleration on the crossing is discussed.Correlations between different data are analysed and assessed and correlation between peak estimated load transfer forces and accelerations is presented.Based on the analysis,conclusions are drawn about the different types of dynamic information around S&Cs that can be obtained from a variety of sensor types. 展开更多
关键词 RAILWAY accelerometer Condition monitoring Impact force Switch and crossing Strain gauge
在线阅读 下载PDF
The Application of a Smartphone in Ship Stability Experiment
10
作者 Mohamed Abdelkader Djebli Benameur Hamoudi Omar Imine Lahouari Adjlout 《Journal of Marine Science and Application》 CSCD 2015年第4期406-412,共7页
The inclining experiment is the only regulatory tool to assess ship stability. This experiment is a time consuming process for both real-life tests and ship model experiments. The difficulty is mainly due to a bias in... The inclining experiment is the only regulatory tool to assess ship stability. This experiment is a time consuming process for both real-life tests and ship model experiments. The difficulty is mainly due to a bias in the measurement of heel angle. Nowadays, digital inclinometers are available, but they are expensive. In this study, the use of a smartphone application is presented for ship inclination and rolling-period tests. The idea consists of using accelerometer and gyroscope sensors built into the current smartphones for the measurements. Therefore, some experiments are carried out on an example trawler model to exhibit the uses and advantages of this method. The obtained results are in good agreement with those provided from the pendulum method and natural roll-period test. This application is new, easy, and more accurately assesses metacentric height during the inclining and rolling-period tests. 展开更多
关键词 ship stability GM-Meter inclining experiment rolling-period test SMARTPHONE accelerometer gyroscopic sensor
在线阅读 下载PDF
A Design of Penetration Ammunition Fuse System Based on Embedded Technology
11
作者 李强 刘晓明 谢晓梅 《Journal of Electronic Science and Technology of China》 2007年第1期81-86,共6页
The hard target smart fuse of penetration ammunition is developing to be smaller, lighter, smarter and multifunction. After analyzing the characteristics of high-g accelerating signals and the penetration algorithms, ... The hard target smart fuse of penetration ammunition is developing to be smaller, lighter, smarter and multifunction. After analyzing the characteristics of high-g accelerating signals and the penetration algorithms, this paper provides a solution of penetration ammunition fuse system based on embedded technology. This fuse system realizes acquisition of the high-g accelerating signals and uses the appropriate penetration algorithms to process them. The fuse system can not only make the same type of penetration ammunition to attack different kinds of objects accurately, but also meet the other requirements of the function of penetration ammunition fuse system. 展开更多
关键词 high-g accelerometer EMBEDDED FUSE penetration ammunition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部