Experiments were conducted to evaluate the physiological and the biochemical characteristics of waxy wheat seeds under accelerated aging conditions. Five waxy wheat lines, which were Waxy 1, Waxy 4, Waxy 8, Waxy 9, an...Experiments were conducted to evaluate the physiological and the biochemical characteristics of waxy wheat seeds under accelerated aging conditions. Five waxy wheat lines, which were Waxy 1, Waxy 4, Waxy 8, Waxy 9, and Waxy 15; and five non-waxy wheat lines: S-39, 04J89, Jan-81, III42-4, and II110 were studied. The seeds were subjected to accelerated aging at 40℃, 45℃, 50℃, 55℃, and 60℃, and 90% relative humidity for 0, 2, 4, 6, and 8 days, respectively. The results showed a gradual increase in conductivity and decrease in germination rate during accelerated aging. SOD, POD and CAT activities increased at lowgrade treatment, but decreased at severe treatment. On the other hand, the soluble protein content decreased at 45 ℃, but successively increased, then decreased 50℃. From the above study, it showed that 90% RH at 55℃ was the best accelerated aging condition for optimum efficiency in a shorter period.展开更多
To understand the aging effects on detonation performances of explosives,an accelerated aging mechanism and effect of explosives were analyzed.Based on the thermo-gravimetric(TG) curves of explosives under the heat ra...To understand the aging effects on detonation performances of explosives,an accelerated aging mechanism and effect of explosives were analyzed.Based on the thermo-gravimetric(TG) curves of explosives under the heat rate of 5,10 and 20 K·min-1,the thermal decomposition activation energy,pre-exponential factor,mechanism function and kinetic equation of the explosives were calculated by Ozawa's equation and decomposition extents.Then,according to the derived kinetic equation,the density,composition and heat of formation of GI-1,PBX-1 and PBX-2 explosive in different decomposition extents were calculated at accelerated aging temperatures of 70 ℃ and 75 ℃,respectively.Furthermore,the detonation parameters of GI-1,PBX-1 and PBX-2 explosives were found out by means of VLWR code.The results show that after accelerated aging,the density are decrease,the detonation velocity and pressure are all decreased slightly.展开更多
Calcined ginger nuts admixed by fly ash and quartz sand(CGN-(F+S))has been validated to be basically compatible to earthen sites as an anchor grout.Accelerated ageing tests including water stability test,temperature a...Calcined ginger nuts admixed by fly ash and quartz sand(CGN-(F+S))has been validated to be basically compatible to earthen sites as an anchor grout.Accelerated ageing tests including water stability test,temperature and humidity cycling test,soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S)grout.Density,surface hardness,water penetration capacity,water permeability capacity,soluble salt,scanning electron microscopy(SEM)images and energy dispersive spectrometry(EDS)spectrum of these samples have been tested after accelerated ageing tests.The results show that densities of samples decrease,surface hardness,water penetration capacity and water permeability capacity of samples increase generally.Besides,soluble salt analysis,SEM and EDS results well corroborate the changes.Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test,followed by water stability,soundness and alkali resistance test in sequence.But in general,CGN-(F+S)still has good durability.展开更多
With the purpose of investigating the effects of confining pressure and aging on the mechanical properties of Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant,tensile tests of thermal accelerate...With the purpose of investigating the effects of confining pressure and aging on the mechanical properties of Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant,tensile tests of thermal accelerated aged propellant samples under room temperature and different confining pressure conditions were performed through the use of a self-made confining pressure device and conventional testing machine.Afterwards,the maximum tensile stressσmand the corresponding strainεm for the propellant under different test conditions were obtained and analyzed.The results indicate that confining pressure and aging can significantly affect the mechanical properties of HTPB propellant,and the coupled effects are very complex.On the one hand,the stressσmincreases as a whole when confining pressure becomes higher or thermal aging time rises.Besides,this stress is more sensitive to aging with increasing confining pressure.There are almost three regions in the stress increments(σm P-σm0)/σm0and thermal aging time curves for HTPB propellant.The maximum value of the stress increment(σm P-σm0)/σm0for the propellant is about 98%at 7.0 MPa and 170 d.On the other hand,the strainεm decreases with increasing thermal aging time under the whole confining pressure conditions.However,the variation of this strain with confining pressure is more complex at various thermal aging time,which is different from that of unaged solid propellant in previous researches.In addition,this strain is slightly less sensitive to aging as the confining pressure increases.Furthermore,there is also a critical confining pressure in this investigation,whose value is between 0.15 MPa and 4.0 MPa.Beyond this critical pressure,the trends of the stressσmand the corresponding strainεm all change.Moreover,there are some critical thermal aging time for the stress increment(σm P-σm0)/σm0and strain increment(εm P-εm0)/εm0of HTPB propellant in this investigation,which are about at 35,50 and 170 d.Finally,based on the twin-shear strength theory,a new modified nonlinear strength criterion of thermal aged HTPB propellant under confining pressure was proposed.And the whole errors of fitted results are lower than 6%.Therefore,the proposed strength criterion can be selected as a failure criterion for the analysis the failure properties of aged HTPB propellant under different confining pressures,the structural integrity of solid propellant grain and the safety of solid rocket motor during ignition operation after long periods of storage.展开更多
基金Supported by National Natural Science Foundation of China (31000712)National Natural Science Fund (31000712)Yunnan Provincial Education Department Scientific Research Program (08Y0166)
文摘Experiments were conducted to evaluate the physiological and the biochemical characteristics of waxy wheat seeds under accelerated aging conditions. Five waxy wheat lines, which were Waxy 1, Waxy 4, Waxy 8, Waxy 9, and Waxy 15; and five non-waxy wheat lines: S-39, 04J89, Jan-81, III42-4, and II110 were studied. The seeds were subjected to accelerated aging at 40℃, 45℃, 50℃, 55℃, and 60℃, and 90% relative humidity for 0, 2, 4, 6, and 8 days, respectively. The results showed a gradual increase in conductivity and decrease in germination rate during accelerated aging. SOD, POD and CAT activities increased at lowgrade treatment, but decreased at severe treatment. On the other hand, the soluble protein content decreased at 45 ℃, but successively increased, then decreased 50℃. From the above study, it showed that 90% RH at 55℃ was the best accelerated aging condition for optimum efficiency in a shorter period.
文摘To understand the aging effects on detonation performances of explosives,an accelerated aging mechanism and effect of explosives were analyzed.Based on the thermo-gravimetric(TG) curves of explosives under the heat rate of 5,10 and 20 K·min-1,the thermal decomposition activation energy,pre-exponential factor,mechanism function and kinetic equation of the explosives were calculated by Ozawa's equation and decomposition extents.Then,according to the derived kinetic equation,the density,composition and heat of formation of GI-1,PBX-1 and PBX-2 explosive in different decomposition extents were calculated at accelerated aging temperatures of 70 ℃ and 75 ℃,respectively.Furthermore,the detonation parameters of GI-1,PBX-1 and PBX-2 explosives were found out by means of VLWR code.The results show that after accelerated aging,the density are decrease,the detonation velocity and pressure are all decreased slightly.
基金Project(51578272)supported by the National Natural Science Foundation of China
文摘Calcined ginger nuts admixed by fly ash and quartz sand(CGN-(F+S))has been validated to be basically compatible to earthen sites as an anchor grout.Accelerated ageing tests including water stability test,temperature and humidity cycling test,soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S)grout.Density,surface hardness,water penetration capacity,water permeability capacity,soluble salt,scanning electron microscopy(SEM)images and energy dispersive spectrometry(EDS)spectrum of these samples have been tested after accelerated ageing tests.The results show that densities of samples decrease,surface hardness,water penetration capacity and water permeability capacity of samples increase generally.Besides,soluble salt analysis,SEM and EDS results well corroborate the changes.Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test,followed by water stability,soundness and alkali resistance test in sequence.But in general,CGN-(F+S)still has good durability.
基金the financial support of the National Natural Funds in China(No.11772352)the Science project of Shaanxi Province(Nos.20190504 and 2019SZS-09)。
文摘With the purpose of investigating the effects of confining pressure and aging on the mechanical properties of Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant,tensile tests of thermal accelerated aged propellant samples under room temperature and different confining pressure conditions were performed through the use of a self-made confining pressure device and conventional testing machine.Afterwards,the maximum tensile stressσmand the corresponding strainεm for the propellant under different test conditions were obtained and analyzed.The results indicate that confining pressure and aging can significantly affect the mechanical properties of HTPB propellant,and the coupled effects are very complex.On the one hand,the stressσmincreases as a whole when confining pressure becomes higher or thermal aging time rises.Besides,this stress is more sensitive to aging with increasing confining pressure.There are almost three regions in the stress increments(σm P-σm0)/σm0and thermal aging time curves for HTPB propellant.The maximum value of the stress increment(σm P-σm0)/σm0for the propellant is about 98%at 7.0 MPa and 170 d.On the other hand,the strainεm decreases with increasing thermal aging time under the whole confining pressure conditions.However,the variation of this strain with confining pressure is more complex at various thermal aging time,which is different from that of unaged solid propellant in previous researches.In addition,this strain is slightly less sensitive to aging as the confining pressure increases.Furthermore,there is also a critical confining pressure in this investigation,whose value is between 0.15 MPa and 4.0 MPa.Beyond this critical pressure,the trends of the stressσmand the corresponding strainεm all change.Moreover,there are some critical thermal aging time for the stress increment(σm P-σm0)/σm0and strain increment(εm P-εm0)/εm0of HTPB propellant in this investigation,which are about at 35,50 and 170 d.Finally,based on the twin-shear strength theory,a new modified nonlinear strength criterion of thermal aged HTPB propellant under confining pressure was proposed.And the whole errors of fitted results are lower than 6%.Therefore,the proposed strength criterion can be selected as a failure criterion for the analysis the failure properties of aged HTPB propellant under different confining pressures,the structural integrity of solid propellant grain and the safety of solid rocket motor during ignition operation after long periods of storage.