期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Autoregressive moving average model as a multi-agent routing protocol for wireless sensor networks 被引量:2
1
作者 黄如 黄浩 +1 位作者 陈志华 何兴勇 《Journal of Beijing Institute of Technology》 EI CAS 2011年第3期421-426,共6页
A prediction-aided routing algorithm based on ant colony optimization mode (PRACO) to achieve energy-aware data-gathering routing structure in wireless sensor networks (WSN) is presented. We adopt autoregressive m... A prediction-aided routing algorithm based on ant colony optimization mode (PRACO) to achieve energy-aware data-gathering routing structure in wireless sensor networks (WSN) is presented. We adopt autoregressive moving average model (ARMA) to predict dynamic tendency in data traffic and deduce the construction of load factor, which can help to reveal the future energy status of sensor in WSN. By checking the load factor in heuristic factor and guided by novel pheromone updating rule, multi-agent, i. e. , artificial ants, can adaptively foresee the local energy state of networks and the corresponding actions could be taken to enhance the energy efficiency in routing construction. Compared with some classic energy-saving routing schemes, the simulation results show that the proposed routing building scheme can ① effectively reinforce the robustness of routing structure by mining the temporal associability and introducing multi-agent optimization to balance the total energy cost for data transmission, ② minimize the total communication consumption, and ③prolong the lifetime of networks. 展开更多
关键词 wireless sensor networks (WSN) autoregressive moving average arma MULTIAGENT ROUTING ROBUSTNESS
在线阅读 下载PDF
基于Transformer和ARMA双数据驱动模型的抽水蓄能机组劣化趋势集成预测
2
作者 钟子威 祝令凯 +3 位作者 郭俊山 郑威 巩志强 商攀峰 《水电能源科学》 北大核心 2025年第3期191-195,共5页
为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根... 为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根据分解所得分量的不同时间尺度特性,利用Transformer模型对非线性分量进行预测,利用ARMA模型对线性分量进行预测,最后将预测值叠加得到最终预测结果。利用某抽水蓄能机组监测数据进行试验,结果表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组劣化趋势预测准确性。 展开更多
关键词 劣化趋势预测 完全自适应噪声集成经验模态分解 TRANSFORMER 自回归滑动平均
在线阅读 下载PDF
基于ARMAV模型和J-散度的结构损伤识别
3
作者 李孟 郭惠勇 《振动与冲击》 EI CSCD 北大核心 2024年第1期123-130,152,共9页
损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对... 损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对加速度时域数据进行消除激励相关性以及降噪处理;建立了ARMAV模型,并由模型的自回归参数和残差方差构建损伤判别指标;采用三层框架试验数据,并进行转播塔模型的损伤识别试验研究验证了该方法的有效性。结果表明:基于ARMAV模型和J-散度距离的损伤识别方法可操作性强,能够准确、高效地定位框架和塔架结构的损伤,且该方法受环境变化的影响较小,可为在线结构健康监测提供一种新思路。 展开更多
关键词 损伤识别 试验研究 向量自回归滑动平均(armaV)模型 J-散度 时间序列分析
在线阅读 下载PDF
基于ARMA模型的隧道变形预测及参数估计分析
4
作者 刘君伟 杨晓辉 《市政技术》 2024年第7期54-60,共7页
以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模... 以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模型进行参数估计,给出了模型关键参数,构建了合理的预测模型。将模型预测结果与实测数据进行对比,显示预测结果与实测数据变化趋势高度吻合,充分验证了预测模型的可行性、有效性与稳定性。 展开更多
关键词 地铁隧道 arma模型 变形预测 时间序列
在线阅读 下载PDF
多模型融合的时间序列数据预测方法
5
作者 张建勋 胡少杰 +1 位作者 芦丽旭 潘禹江 《西安邮电大学学报》 2025年第1期115-122,共8页
针对长短期记忆(Long Short-Term Memory,LSTM)神经网络预测滞后性和过度依赖数据的问题,提出一种多模型融合的时间序列数据预测方法。该方法在融合经验模态分解和自回归积分滑动平均模型(Autoregressive Integrated Moving Average Mod... 针对长短期记忆(Long Short-Term Memory,LSTM)神经网络预测滞后性和过度依赖数据的问题,提出一种多模型融合的时间序列数据预测方法。该方法在融合经验模态分解和自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)基础上,先对数据进行经验模态分解,然后针对分解数据的线性分量和非线性分量分别采用ARIMA模型和引入注意力机制的LSTM模型进行处理,最后合成预测结果。实验结果表明,该方法的预测精度达到98.95%,与单一模型对比,融合模型具有更高的预测精度。 展开更多
关键词 经验模态分解 自回归移动平均 长短期记忆神经网络 注意力机制 时间序列数据预测
在线阅读 下载PDF
基于小波变换和GM-ARMA的导弹备件消耗预测 被引量:8
6
作者 赵建忠 徐廷学 +1 位作者 葛先军 尹延涛 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第4期553-558,共6页
针对导弹备件消耗呈现"小样本、非平稳"的特点,为了克服传统预测方法依靠大样本数据进行建模的不足,提出了把基于小波变换和改进GM-ARMA的组合预测方法应用于导弹备件消耗预测的构想.在利用小波分解和其他模型建立组合模型的... 针对导弹备件消耗呈现"小样本、非平稳"的特点,为了克服传统预测方法依靠大样本数据进行建模的不足,提出了把基于小波变换和改进GM-ARMA的组合预测方法应用于导弹备件消耗预测的构想.在利用小波分解和其他模型建立组合模型的过程中,提出了先对小波基方程和分解层数2个特征进行参数化,再定量地对所有子模型的特征参数进行统一、综合的评估,以达到建立最佳组合模型的目的;然后对具有平稳特性的高频信息用阻尼最小二乘法优化的ARMA(Autoregressive and Moving Average)模型进行预测,对反映整体趋势体现非平稳的低频信息用背景值优化和数据变换技术改进的GM(1,1)模型进行预测.实例结果表明所提出的组合预测方法大大降低了预测误差,说明了该方法的有效性、可行性和实用性. 展开更多
关键词 小波变换 灰色模型 自回归移动平均模型 备件 消耗预测
在线阅读 下载PDF
高效ARMA模型高分辨率地震子波提取方法 被引量:4
7
作者 张亚南 戴永寿 +2 位作者 王少水 彭星 牛慧 《石油地球物理勘探》 EI CSCD 北大核心 2011年第5期686-694,836+660,共9页
ARMA模型的最大优点是用较少的参数描述一个精确的子波,超定阶容易造成计算量大、运算速度慢,欠定阶不能满足精确子波描述的要求。针对高阶累积量对特殊切片敏感,且在短时数据下应用效果差的问题,本文采用基于自相关函数的奇异值分解(S... ARMA模型的最大优点是用较少的参数描述一个精确的子波,超定阶容易造成计算量大、运算速度慢,欠定阶不能满足精确子波描述的要求。针对高阶累积量对特殊切片敏感,且在短时数据下应用效果差的问题,本文采用基于自相关函数的奇异值分解(SVD)法确定AR模型阶数,同时将信息量准则法与高阶累积量法相结合,提出了一种新的MA模型定阶法。数值仿真和实际地震数据处理结果均表明,本文所用方法可有效地压制加性高斯色噪声,信息量准则法可有效提高MA定阶的准确率,在保证子波精度的同时尽可能降低模型阶数,实现运算高效率。 展开更多
关键词 地震子波 高阶累积量 自回归滑动平均(arma) 奇异值分解(SVD) 信息量准则
在线阅读 下载PDF
基于ARMA预测模型的交叉口车辆碰撞风险评估 被引量:8
8
作者 张良力 祝贺 +1 位作者 吴超仲 郑安文 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第5期239-245,共7页
车辆进入交叉口前的速度时间序列可用于预测车辆进入交叉口后若干步数速度值,利用车速预测值推算冲突方向车辆在交叉口内的行驶位移及其车间距离,可评估车辆发生碰撞的风险.针对交叉口附近车速分布符合随机序列特征,采用自回归滑动平均(... 车辆进入交叉口前的速度时间序列可用于预测车辆进入交叉口后若干步数速度值,利用车速预测值推算冲突方向车辆在交叉口内的行驶位移及其车间距离,可评估车辆发生碰撞的风险.针对交叉口附近车速分布符合随机序列特征,采用自回归滑动平均(ARMA)理论进行车速时序预测建模,步骤包括时序数据相关性检查、模型p-q定阶、解析式系数估计、适用性检验.试验结果表明:利用实测车速中的前40个时序数据建立ARMA模型,预测出的20个车速值与实测值贴近,冲突方向两车车速归一化平均绝对误差分别为0.006 56和0.003 4;利用全部60个实测数据建立预测模型,检测预测值残差自相关函数发现其绝对值均小于0.258 2,表明所建车速预测方法适用. 展开更多
关键词 智能交通 碰撞风险评估 自回归滑动平均建模 交叉路口 车速预测
在线阅读 下载PDF
基于AR和ARMA模型的多变量非高斯风压模拟 被引量:3
9
作者 李锦华 李春祥 +1 位作者 邓莹 蒋磊 《振动与冲击》 EI CSCD 北大核心 2017年第24期103-107,123,共6页
基于多变量非高斯随机过程间的相关性,将发展的单变量非高斯过程自回归和自回归滑动平均(AR和ARMA)模型模拟算法扩展至多变量非高斯过程的数值模拟。通过AR和ARMA模型系数考虑多变量非高斯过程间的相关性,建立多变量非高斯过程AR和ARMA... 基于多变量非高斯随机过程间的相关性,将发展的单变量非高斯过程自回归和自回归滑动平均(AR和ARMA)模型模拟算法扩展至多变量非高斯过程的数值模拟。通过AR和ARMA模型系数考虑多变量非高斯过程间的相关性,建立多变量非高斯过程AR和ARMA模型的模拟算法。多变量非高斯风压的数值模拟表明:AR和ARMA模型算法能有效地模拟低斜度、中斜度和高斜度的多变量非高斯随机过程。 展开更多
关键词 多变量非高斯随机过程 非高斯脉动风压 自回归模型 自回归滑动平均模型
在线阅读 下载PDF
盾构机土压平衡系统的ARMA模型及其参数估计 被引量:9
10
作者 李守巨 霍军周 曹丽娟 《煤炭学报》 EI CAS CSCD 北大核心 2014年第11期2201-2205,共5页
为了表征盾构机土仓压力平衡系统的时滞特性和提高模型的预测精度,建立了该系统的自回归滑动平均(ARMA)模型,并提出了基于优化算法的ARMA模型参数估计方法。实验结果表明,与经典的线性机理模型相对比,新模型显著提高了土仓压力的拟合和... 为了表征盾构机土仓压力平衡系统的时滞特性和提高模型的预测精度,建立了该系统的自回归滑动平均(ARMA)模型,并提出了基于优化算法的ARMA模型参数估计方法。实验结果表明,与经典的线性机理模型相对比,新模型显著提高了土仓压力的拟合和预测精度。ARMA模型预测土仓压力的最大相对误差从机理模型的41%降低到9%。结合实验数据,分析了该系统动态响应的时滞特性,分析表明,螺旋输送机转速对下一时刻土仓压力影响的时滞特性更加明显。 展开更多
关键词 自回归滑动平均模型 参数估计 土压平衡系统 盾构机 时滞特性
在线阅读 下载PDF
基于ARMA模型模拟高架桥的脉动风速时程 被引量:14
11
作者 李春祥 谈雅雅 李锦华 《振动与冲击》 EI CSCD 北大核心 2009年第6期46-51,59,共7页
强风是高架桥设计与防灾减灾分析的控制性荷载之一。风与高架桥相互作用十分复杂,可以通过风洞试验、现场实测、数值模拟获取可靠的风速(风荷载)数据。尽管如此,时域分析可以使人们更全面地了解高架桥的风振响应特性,也能更直观地反映... 强风是高架桥设计与防灾减灾分析的控制性荷载之一。风与高架桥相互作用十分复杂,可以通过风洞试验、现场实测、数值模拟获取可靠的风速(风荷载)数据。尽管如此,时域分析可以使人们更全面地了解高架桥的风振响应特性,也能更直观地反映高架桥风致振动控制的有效性。因此,使用线性滤波法即白噪声滤波法(WNFM)中的自回归滑动平均(ARMA)模型模拟高架桥的脉动风速时程。首先,考虑高架桥脉动风速的时间和空间相关性,导出自回归(AR)模型阶数与滑动回归(MA)模型阶数不相等时ARMA模型的表达式。接着,基于Kaimal风速谱,使用ARMA模型来模拟一座实际高架桥的脉动风速时程。最后,通过比较模拟风速功率谱、自相关和互相关函数与目标风速功率谱、自相关和互相关函数的吻合程度,验证基于ARMA模型模拟高架桥脉动风速时程的可行性。 展开更多
关键词 高架桥 风荷载 风速时程 自回归滑动平均模型 随机过程 数值模拟
在线阅读 下载PDF
基于ARMA模型的心电聚类算法 被引量:4
12
作者 毛雪岷 张婷婷 +1 位作者 蔡传晰 李琼 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第6期816-821,共6页
对心电信号(ECG)这种高维的时间序列进行聚类,最重要的方面之一即进行特征提取。本研究提出利用自回归和移动平均(ARMA)模型拟合ECG信号,以拟合系数的欧氏距离为结构不相似测度征进行聚类。但此方法没有考虑样本数据的各维特征对聚类的... 对心电信号(ECG)这种高维的时间序列进行聚类,最重要的方面之一即进行特征提取。本研究提出利用自回归和移动平均(ARMA)模型拟合ECG信号,以拟合系数的欧氏距离为结构不相似测度征进行聚类。但此方法没有考虑样本数据的各维特征对聚类的不同贡献率,所以本文提出可以把首次聚类每维特征在聚类中的贡献率作为其权值,对每维数据加权后重新进行聚类。以MIT-BIH标准数据库中的正常窦性心率(NSR)和心室早期收缩(PVC)样本数据进行聚类分析,结果表明利用改进后的方法进行聚类的准确度达到93.10%,从而证明了所提方法的有效性。 展开更多
关键词 聚类 arma模型 特征提取 权重确定 ECG信号
在线阅读 下载PDF
基于ARMA时序模型的结构参数识别集员算法 被引量:4
13
作者 王晓军 邱志平 武哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第11期1345-1348,共4页
研究在时域内利用含噪声观测数据识别结构参数问题.建立了与结构振动微分方程等价的自回归滑动平均(ARMA,Autoregressive Moving-Average)时序模型,将结构参数识别问题转换为ARMA模型参数辨识问题.在不确定但有界(UBB,Unknown-But-Bound... 研究在时域内利用含噪声观测数据识别结构参数问题.建立了与结构振动微分方程等价的自回归滑动平均(ARMA,Autoregressive Moving-Average)时序模型,将结构参数识别问题转换为ARMA模型参数辨识问题.在不确定但有界(UBB,Unknown-But-Bounded)噪声假设下,基于线性时不变系统参数集员辨识的区间算法,寻求与观测数据和噪声相容的参数的最小超长方体(或区间向量),进而得到结构参数的估计值.通过数值算例,将本文算法与最小二乘算法进行了比较,显示了其可行性和有效性. 展开更多
关键词 结构参数识别 集员辨识 自回归滑动平均模型 区间数学 不确定但有界
在线阅读 下载PDF
基于五点三次平滑和ARMA的次同步振荡参数辨识 被引量:5
14
作者 王雨虹 杨明昆 +2 位作者 包伟川 付华 徐耀松 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第6期790-796,共7页
为了准确辨识电力系统次同步振荡模态参数,文章提出一种五点三次平滑和自回归滑动平均(auto-regressive moving average,ARMA)算法相结合的次同步振荡模态辨识方法。首先使用五点三次平滑算法对次同步振荡信号进行去噪预处理,然后对去... 为了准确辨识电力系统次同步振荡模态参数,文章提出一种五点三次平滑和自回归滑动平均(auto-regressive moving average,ARMA)算法相结合的次同步振荡模态辨识方法。首先使用五点三次平滑算法对次同步振荡信号进行去噪预处理,然后对去噪后的信号建立ARMA模型进行次同步振荡模态参数辨识。算例分析结果表明,与希尔伯特黄变换(Hilbert-Huang transform,HHT)算法和ARMA算法相比,该方法去噪性能更好,辨识精度较高。进一步对仿真系统信号进行快速傅里叶变换(fast Fourier transform,FFT),其结果也验证了所提辨识方法的正确性和实用性。 展开更多
关键词 次同步振荡 五点三次平滑算法 arma算法 参数辨识
在线阅读 下载PDF
基于ARMA和遗传算法优化的BP神经网络电动机断条故障诊断 被引量:3
15
作者 边宁 许允之 《煤矿机电》 2017年第3期23-26,30,共5页
为判断鼠笼式三相异步电动机转子断条故障情况,提出了一种利用定子电流信号,基于ARMA和遗传算法优化的BP神经网络的诊断方法。首先,使用改进的ARMA算法对电动机的定子电流波形进行拟合,将自回归系数模型系数提取出来,作为表征电动机故... 为判断鼠笼式三相异步电动机转子断条故障情况,提出了一种利用定子电流信号,基于ARMA和遗传算法优化的BP神经网络的诊断方法。首先,使用改进的ARMA算法对电动机的定子电流波形进行拟合,将自回归系数模型系数提取出来,作为表征电动机故障的特征向量,并分为训练集和测试集。然后利用遗传算法优化BP神经网络的初始阈值和权值,以避免BP神经网络陷入局部极值点的问题。再用训练集对BP神经网络进行训练,用训练好的神经网络对测试集进行判断。实验结果显示,ARMA模型可较好地对三相异步电动机定子电流波形进行拟合,BP神经网络可较为准确地判断特征向量表征的故障情况,此方法具有较好的诊断结果。 展开更多
关键词 鼠笼式三相异步电动机 转子断条 自回归滑动平均(arma)模型 BP神经网络 故障诊断
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
16
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 变分模态分解(VMD) 差分整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
运用EEMD-ARMA模型预测中国棉花产量 被引量:1
17
作者 王艳 《国际纺织导报》 2022年第2期42-47,共6页
中国棉花产量组成的时间序列呈非光滑、非单调的复杂分布形式。运用集成经验模态分解(EEMD)和自回归滑动平均模型(ARMA)相结合对其进行预测。首先利用EEMD方法对原始信号进行分解,得到一组平稳的本征模函数和一个具有趋势性的光滑余波,... 中国棉花产量组成的时间序列呈非光滑、非单调的复杂分布形式。运用集成经验模态分解(EEMD)和自回归滑动平均模型(ARMA)相结合对其进行预测。首先利用EEMD方法对原始信号进行分解,得到一组平稳的本征模函数和一个具有趋势性的光滑余波,然后运用ARMA模型分别对本征模函数和余波进行预测,最后将二者的预测值合并,实现对中国棉花产量的精确预测。研究表明,EEMD-ARMA组合模型的平均预测误差仅为0.98936%,比单一ARMA模型的平均预测误差减小了45.60280%。根据EMD-ARMA组合模型,预测得2021年中国棉花产量为610.6475万t,这一预测结果比单一ARMA模型的预测结果更合理。 展开更多
关键词 棉花产量 预测 集成经验模态 自回归滑动平均
在线阅读 下载PDF
MPARMA模型EM算法及观测信息矩阵的计算 被引量:4
18
作者 王会战 《陕西理工学院学报(自然科学版)》 2010年第1期79-85,共7页
混合周期自回归滑动平均模型(Mixture Periodical Autoregressive Moving-Average-MPARMA)是一类新的用于描述周期时间序列中非线性特征的非线性模型,由于MPARMA模型的参数较多,传统的参数估计方法的推导十分冗繁。利用EM(Expectation M... 混合周期自回归滑动平均模型(Mixture Periodical Autoregressive Moving-Average-MPARMA)是一类新的用于描述周期时间序列中非线性特征的非线性模型,由于MPARMA模型的参数较多,传统的参数估计方法的推导十分冗繁。利用EM(Expectation Maximization)算法,研究了混合周期自回归滑动平均模型的参数估计方法,讨论了EM估计的标准差,详细推导了观测信息矩阵和缺损信息矩阵的计算公式。蒙特卡洛模拟实验结果表明,EM算法是一种简单有效的MPARMA模型参数估计方法。 展开更多
关键词 EM算法 标准差 观测信息矩阵 完全信息矩阵 缺损信息矩阵 混合周期自回归滑动平均模型
在线阅读 下载PDF
基于ARIMA的航空发动机排气温度预测
19
作者 易文川 孟双杰 《成都航空职业技术学院学报》 2025年第1期46-50,共5页
航空发动机排气温度的实时监测和预测,有利于提高发动机的安全性。通过基于自回归积分滑动平均(ARIMA)建立航空发动机排气温度预测模型,基于单位根检验(ADF)和信息准则确定模型的参数,以预测IO-360-L2A型发动机排气温度的未来值。并通... 航空发动机排气温度的实时监测和预测,有利于提高发动机的安全性。通过基于自回归积分滑动平均(ARIMA)建立航空发动机排气温度预测模型,基于单位根检验(ADF)和信息准则确定模型的参数,以预测IO-360-L2A型发动机排气温度的未来值。并通过对比不同样本长度和预测长度给模型预测误差带来的变化确定最优样本长度和预测长度。结果表明,ARIMA(5,2,3)模型对航空发动机排气温度序列的拟合效果最好,使用250s以上的历史样本数据对未来70s内的排气温度数据进行预测效果最佳,能够准确预测航空发动机排气温度的变化。 展开更多
关键词 排气温度 自回归积分滑动平均 航空发动机 参数预测
在线阅读 下载PDF
ARMA模型的平方根超定递推辅助变量定阶方法
20
作者 肖创柏 《湘潭大学自然科学学报》 CAS CSCD 1991年第4期131-138,共8页
提出了自回归滑动平均(ARMA)模型的平方根超定递推辅助变量定价方法.该方法避免了计算逆协方差阵失去正定性的问题,改进了超定递推辅助变量定阶方法的数值稳定性.模拟计算与实验数据处理表明,该方法数值稳定性好,收敛速度快,抗噪能力强... 提出了自回归滑动平均(ARMA)模型的平方根超定递推辅助变量定价方法.该方法避免了计算逆协方差阵失去正定性的问题,改进了超定递推辅助变量定阶方法的数值稳定性.模拟计算与实验数据处理表明,该方法数值稳定性好,收敛速度快,抗噪能力强.是一种高性能的定阶方法。 展开更多
关键词 arma模型 平方根法 定阶
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部