针对多端柔性直流电网(multi-terminal direct current grid based on modular multilevel converter,MMC-MTDC)故障诊断存在的人工整定阈值过程复杂、高阻故障不易检测的问题,提出一种基于行波特征的诊断方法。首先,通过分析系统的故...针对多端柔性直流电网(multi-terminal direct current grid based on modular multilevel converter,MMC-MTDC)故障诊断存在的人工整定阈值过程复杂、高阻故障不易检测的问题,提出一种基于行波特征的诊断方法。首先,通过分析系统的故障特征,得出边界元件对高频信号的阻滞作用;其次,利用经验模态分解(empirical mode decomposition,EMD)对功率进行分解,得到本征模态函数(intrinsic mode function,IMF)分量,将其能量值作为故障特征量训练由卷积神经网络(convolutional neural network,CNN)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)组成的CNN-BiGRU网络;然后,采用开普勒优化算法(Kepler optimization algorithm,KOA)和注意力机制(attention mechanism,AM)对CNN-BiGRU网络进行改进,实现MMC-MTDC的故障诊断;最后,在PSCAD/EMTDC中搭建仿真模型。结果表明,该方法不仅可以实现母线故障和线路故障的检测,还可以在满足保护可靠性和速动性的前提下,解决高阻故障保护易拒动的问题。展开更多
虚拟电厂(virtual power plant,VPP)作为多能流互联的综合能源网络,已成为中国加速实现双碳目标的重要角色。但VPP内部资源协同低碳调度面临多能流的耦合程度紧密、传统碳交易模型参数主观性强、含高维动态参数的优化目标在线求解困难...虚拟电厂(virtual power plant,VPP)作为多能流互联的综合能源网络,已成为中国加速实现双碳目标的重要角色。但VPP内部资源协同低碳调度面临多能流的耦合程度紧密、传统碳交易模型参数主观性强、含高维动态参数的优化目标在线求解困难等问题。针对这些问题,文中提出一种融合注意力机制(attention mechanism,AM)与柔性动作评价(soft actor-critic,SAC)算法的VPP多能流低碳调度方法。首先,根据VPP的随机碳流特性,面向动态参数建立基于贝叶斯优化的改进阶梯型碳交易机制。接着,以经济效益和碳排放量为目标函数构建含氢VPP多能流解耦模型。然后,考虑到该模型具有高维非线性与权重参数实时更新的特征,利用融合AM的改进SAC深度强化学习算法在连续动作空间对模型进行求解。最后,对多能流调度结果进行仿真分析和对比实验,验证了文中方法的可行性及其相较于原SAC算法较高的决策准确性。展开更多
文摘虚拟电厂(virtual power plant,VPP)作为多能流互联的综合能源网络,已成为中国加速实现双碳目标的重要角色。但VPP内部资源协同低碳调度面临多能流的耦合程度紧密、传统碳交易模型参数主观性强、含高维动态参数的优化目标在线求解困难等问题。针对这些问题,文中提出一种融合注意力机制(attention mechanism,AM)与柔性动作评价(soft actor-critic,SAC)算法的VPP多能流低碳调度方法。首先,根据VPP的随机碳流特性,面向动态参数建立基于贝叶斯优化的改进阶梯型碳交易机制。接着,以经济效益和碳排放量为目标函数构建含氢VPP多能流解耦模型。然后,考虑到该模型具有高维非线性与权重参数实时更新的特征,利用融合AM的改进SAC深度强化学习算法在连续动作空间对模型进行求解。最后,对多能流调度结果进行仿真分析和对比实验,验证了文中方法的可行性及其相较于原SAC算法较高的决策准确性。