This paper is devoted to predict AC loss of cable in conduit conductor (CICC) which is of importance in the design of conductors. The consideration for the conductor's design and main parameters for the magnets are...This paper is devoted to predict AC loss of cable in conduit conductor (CICC) which is of importance in the design of conductors. The consideration for the conductor's design and main parameters for the magnets are introduced. In order to attain a good accuracy in the calculation of AC losses, the field distribution within superconducting outsert should be considered. Calculation of the AC losses, including hysteresis losses and coupling losses, is conducted. An emphasis is put on the hysteresis loss during the ramp up of the current to the operational current (15.3 kA) and the coupling loss of the conductor in a power-down condition for insert. The results are obtained to be 74.9 kJ and 950 J for 40 T hybrid magnets, respectively. Based on the calculation, a brief analysis of losses effect on the conductor design and the operation of magnet is given for the purpose that the capacity of the cryogenertor can be evaluated and the stability regime can be improved in our future work on the hybrid magnets.展开更多
The poloidal field model coil (PFMC) of EAST was a large NbTi superconducting coil. The PFMC was designed and constructed by Institute of Plasma Physics, CAS, and it was tested during 2003 at our institute. One of t...The poloidal field model coil (PFMC) of EAST was a large NbTi superconducting coil. The PFMC was designed and constructed by Institute of Plasma Physics, CAS, and it was tested during 2003 at our institute. One of the most important performance testing items was the AC (Alternating Current) loss. It was able to measure the AC losses by the calorimetric method. The results will be useful for the evaluation of the AC losses of the poloidal coil and provide meaningful data for future operation of the EAST device.展开更多
The central solenoid(CS) is an important component of China Fusion Engineering Test Reactor, for producing, forming and stabilizing plasma in the superconducting tokamak. It is a complicated work to design and manufac...The central solenoid(CS) is an important component of China Fusion Engineering Test Reactor, for producing, forming and stabilizing plasma in the superconducting tokamak. It is a complicated work to design and manufacture the large superconducting CS magnet, so it is meaningful to design a central solenoid model coil(CSMC) and analyze its electromagnetic properties in advance. In this paper, the structure, design parameters and magnetic field distribution of the CS model coil are discussed. The peak power of radial and axial turn conductors and time bucket loss are analyzed by using piecewise-linear method. The CSMC AC loss with different Nb3 Sn CICCs and AC loss of ITER CS coil are compared. The special electrometric method to measure AC loss of the CS model coil for future reference is presented.展开更多
A reliable prediction of AC loss is essential for the application of International Thermonuclear Experimental Reactor(ITER) cable-in-conduit conductors(CICCs);however,the calculation of AC loss of ITER CICCs is a cumb...A reliable prediction of AC loss is essential for the application of International Thermonuclear Experimental Reactor(ITER) cable-in-conduit conductors(CICCs);however,the calculation of AC loss of ITER CICCs is a cumbersome task due to the complicated geometry of the multistage cables and the extreme operating conditions in ITER.In this paper,we described the models developed for hysteresis and coupling loss calculation,which can be suitable for the construction of ITER magnetic system.Meanwhile,we compared the results of theoretical analysis with the SULTAN test result to evaluate the numerical model we used.In addition,we introduced the n-value and AC loss with transport current for CICCs based on the DC measurement results at SULTAN,which lays the foundation for the further study.展开更多
A theoretical model of describing the electromagnetic and thermal dynamics of high-Tc superconducting bulks in a high-Tc superconducting Maglev system is built up.The model contains the effects of hysteresis-type loss...A theoretical model of describing the electromagnetic and thermal dynamics of high-Tc superconducting bulks in a high-Tc superconducting Maglev system is built up.The model contains the effects of hysteresis-type loss,flux flow,flux creep,and thermal diffusion on the superconducting bulks in the Maglev system.As the first stage of this study,the behavior of magnetic and electric fields,as well as the distribution energy flow density in the superconducting bulk is studied.The results show that the flux flow and thermal diffusion affect the behaviors of the electromagnetic field in the high-Tc superconducting bulks in different ways;however,both of them contribute significantly to the energy dissipation of the superconducting bulks when they are used in the Maglev train.展开更多
文摘This paper is devoted to predict AC loss of cable in conduit conductor (CICC) which is of importance in the design of conductors. The consideration for the conductor's design and main parameters for the magnets are introduced. In order to attain a good accuracy in the calculation of AC losses, the field distribution within superconducting outsert should be considered. Calculation of the AC losses, including hysteresis losses and coupling losses, is conducted. An emphasis is put on the hysteresis loss during the ramp up of the current to the operational current (15.3 kA) and the coupling loss of the conductor in a power-down condition for insert. The results are obtained to be 74.9 kJ and 950 J for 40 T hybrid magnets, respectively. Based on the calculation, a brief analysis of losses effect on the conductor design and the operation of magnet is given for the purpose that the capacity of the cryogenertor can be evaluated and the stability regime can be improved in our future work on the hybrid magnets.
基金supported by National Meg-science Engineering Project of the Chinese Government
文摘The poloidal field model coil (PFMC) of EAST was a large NbTi superconducting coil. The PFMC was designed and constructed by Institute of Plasma Physics, CAS, and it was tested during 2003 at our institute. One of the most important performance testing items was the AC (Alternating Current) loss. It was able to measure the AC losses by the calorimetric method. The results will be useful for the evaluation of the AC losses of the poloidal coil and provide meaningful data for future operation of the EAST device.
文摘The central solenoid(CS) is an important component of China Fusion Engineering Test Reactor, for producing, forming and stabilizing plasma in the superconducting tokamak. It is a complicated work to design and manufacture the large superconducting CS magnet, so it is meaningful to design a central solenoid model coil(CSMC) and analyze its electromagnetic properties in advance. In this paper, the structure, design parameters and magnetic field distribution of the CS model coil are discussed. The peak power of radial and axial turn conductors and time bucket loss are analyzed by using piecewise-linear method. The CSMC AC loss with different Nb3 Sn CICCs and AC loss of ITER CS coil are compared. The special electrometric method to measure AC loss of the CS model coil for future reference is presented.
基金supported in part by Ministry of Science and Technology of China under Grant 2014GB105001
文摘A reliable prediction of AC loss is essential for the application of International Thermonuclear Experimental Reactor(ITER) cable-in-conduit conductors(CICCs);however,the calculation of AC loss of ITER CICCs is a cumbersome task due to the complicated geometry of the multistage cables and the extreme operating conditions in ITER.In this paper,we described the models developed for hysteresis and coupling loss calculation,which can be suitable for the construction of ITER magnetic system.Meanwhile,we compared the results of theoretical analysis with the SULTAN test result to evaluate the numerical model we used.In addition,we introduced the n-value and AC loss with transport current for CICCs based on the DC measurement results at SULTAN,which lays the foundation for the further study.
基金support of the Fundamental Research Funds for the Central Universities (SWJTU09ZT24)the National Science Foundation of China (50872116)+1 种基金the PCSIRT of the Ministry of Education of China (IRT0751)the Specialized Research Fund for the Doctoral Program of Higher Education (200806130023)
文摘A theoretical model of describing the electromagnetic and thermal dynamics of high-Tc superconducting bulks in a high-Tc superconducting Maglev system is built up.The model contains the effects of hysteresis-type loss,flux flow,flux creep,and thermal diffusion on the superconducting bulks in the Maglev system.As the first stage of this study,the behavior of magnetic and electric fields,as well as the distribution energy flow density in the superconducting bulk is studied.The results show that the flux flow and thermal diffusion affect the behaviors of the electromagnetic field in the high-Tc superconducting bulks in different ways;however,both of them contribute significantly to the energy dissipation of the superconducting bulks when they are used in the Maglev train.