采用PDMS膜生物反应器和丙酮丁醇梭菌(Clostridium acetobutylicum,CICC8012),通过发酵反应与产物渗透汽化原位分离的耦合,实现了丙酮、丁醇和乙醇混合物(ABE)的连续发酵生产。进行了2轮操作持续时间分别为274 h和300 h的发酵实验,分别...采用PDMS膜生物反应器和丙酮丁醇梭菌(Clostridium acetobutylicum,CICC8012),通过发酵反应与产物渗透汽化原位分离的耦合,实现了丙酮、丁醇和乙醇混合物(ABE)的连续发酵生产。进行了2轮操作持续时间分别为274 h和300 h的发酵实验,分别为间断耦合和连续耦合的操作方式。以连续耦合发酵为例,细胞平均干重为1.68 g L 1,丁醇产量为61.43 g L 1,葡萄糖消耗率为1.12 g L 1 h 1,丁醇的体积产率为0.205 g L 1 h 1,比产率为0.122 h 1,转化率为0.183 g g 1。第二轮连续封闭循环发酵的平均葡萄糖消耗率和丁醇产率,都几乎是第一轮的2倍。两轮发酵的细胞生长、产物浓度、葡萄糖消耗和丁醇生成曲线都出现至少2个峰值,表明丙酮丁醇梭菌能适应这种长期发酵模式并且出现再生长。结果表明,PDMS膜生物反应器封闭循环连续发酵生产ABE(特别是丁醇)的操作模式具有可行性和优越性。展开更多
The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in ...The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).展开更多
文摘采用PDMS膜生物反应器和丙酮丁醇梭菌(Clostridium acetobutylicum,CICC8012),通过发酵反应与产物渗透汽化原位分离的耦合,实现了丙酮、丁醇和乙醇混合物(ABE)的连续发酵生产。进行了2轮操作持续时间分别为274 h和300 h的发酵实验,分别为间断耦合和连续耦合的操作方式。以连续耦合发酵为例,细胞平均干重为1.68 g L 1,丁醇产量为61.43 g L 1,葡萄糖消耗率为1.12 g L 1 h 1,丁醇的体积产率为0.205 g L 1 h 1,比产率为0.122 h 1,转化率为0.183 g g 1。第二轮连续封闭循环发酵的平均葡萄糖消耗率和丁醇产率,都几乎是第一轮的2倍。两轮发酵的细胞生长、产物浓度、葡萄糖消耗和丁醇生成曲线都出现至少2个峰值,表明丙酮丁醇梭菌能适应这种长期发酵模式并且出现再生长。结果表明,PDMS膜生物反应器封闭循环连续发酵生产ABE(特别是丁醇)的操作模式具有可行性和优越性。
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).