期刊文献+
共找到44,920篇文章
< 1 2 250 >
每页显示 20 50 100
基于k-means算法的聚类个数确定方法改进 被引量:1
1
作者 王丙参 王国长 魏艳华 《统计与决策》 北大核心 2025年第7期59-64,共6页
文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方... 文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方法确定k^(*)。数值模拟结果显示:在给定k^(*)的情况下,聚类结果与标签的距离或相似度可作为评价聚类结果的指标,为聚类算法评价提供了新的借鉴;基于k-means算法确定k^(*)的前提是数据集根据欧氏距离可明显分为几簇,相对而言,聚类算法不稳定性方法优于统计量方法;对于不稳定性指标,交叉验证估计方法与随机抽样取交集估计方法对抽样个数稳健,抽样个数依次建议略少于样本容量的1/3、80%;自助抽样估计方法由于利用了全部样本,因此效率更高;4种不稳定性指标没有显著差异,投票与最小化均值方法也没有显著差异。 展开更多
关键词 K-means算法 聚类个数 统计量 不稳定性
在线阅读 下载PDF
基于深度自适应K-means++算法的电抗器声纹聚类方法
2
作者 闵永智 郝大宇 +2 位作者 王果 何怡刚 贺建山 《电力系统保护与控制》 北大核心 2025年第8期1-13,共13页
在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹... 在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹聚类方法。首先通过采用两阶段无监督策略微调的改进堆叠稀疏自编码器(stacked sparse autoencoder,SSAE),对快速傅里叶变换后的归一化频域数据提取电抗器原始声纹32维深度特征。进一步提出了依据最近邻聚类有效性指标(clustering validation index based on nearest neighbors,CVNN)的自适应K-means++聚类算法,构建了能自适应确定最优聚类个数的电抗器声纹聚类模型。最后通过西北地区某750 kV电抗器实测声纹数据集进行了验证。结果表明,DAKCA算法对无标签声纹数据在不同样本均衡程度下能够稳定提取32维深度特征,并实现最优聚类,为直接高效利用电抗器无标签声纹数据提供了参考。 展开更多
关键词 750 kV电抗器 声纹聚类 自适应聚类算法 稀疏自编码器 深度自适应K-means++算法
在线阅读 下载PDF
基于AE并融合GMM与K-means的无监督颤振监测研究
3
作者 王丹 张凤南 +1 位作者 马岩尉 刘博 《工具技术》 北大核心 2025年第2期139-145,共7页
金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣... 金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣削实验。该方法基于自动编码将信号的每一段压缩成二维,使用基于高斯混合模型和K-means合并的混合聚类方法对压缩信号进行聚类。所提出的方法在所有6个典型的无监督评价指标中都优于高斯混合模型和K-means算法。 展开更多
关键词 颤振监测 高斯混合模型 K-means 无监督聚类 自动编码器
在线阅读 下载PDF
基于K-Means和IE模型的采空区地表安全性评价指标研究
4
作者 赵博 俞奎 《金属矿山》 北大核心 2025年第6期221-229,共9页
随着智能算法在灾害评价领域的深入应用,构建合理的评价指标体系对于实现复杂采空区地表安全性的高效评价至关重要。然而,传统指标选取方法存在主观性强、干扰因素多、效率低及数字化程度不足等诸多瓶颈。为此,构建了一种基于K-Means聚... 随着智能算法在灾害评价领域的深入应用,构建合理的评价指标体系对于实现复杂采空区地表安全性的高效评价至关重要。然而,传统指标选取方法存在主观性强、干扰因素多、效率低及数字化程度不足等诸多瓶颈。为此,构建了一种基于K-Means聚类算法和IE理论的高效精确评价指标模型。该模型首先从采空区地表灾害作用机理出发,广泛筛选潜在评价指标;进而利用K-Means算法对这些指标进行聚类筛选,以降低指标信息表达的冗余性和复杂度;通过IE理论计算提炼出对安全性影响显著的关键指标,构建出一套采空区复杂场地安全性评价的指标体系。为验证指标体系的合理性,结合PCA和熵权法进行检验评估;将模型应用于某采空区地区,并与常用方法的评价结果进行对比。结果表明:该模型成功将38个初选指标精简至8个关键指标,所构建的评价指标体系仅用21.1%的指标特征便能表征87.9%的原始指标信息,显著降低了计算工作量,提升了评价效率。该研究成果不仅为采空区地表稳定性评价提供了一种新颖方法,而且为相关领域的研究提供了理论支撑,具有较高的理论价值和实践意义。 展开更多
关键词 采空区 评价指标 聚类算法 信息熵
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
5
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 K-means算法 密度峰值聚类 K近邻
在线阅读 下载PDF
基于k-means机器学习方法的气固循环流化床颗粒聚团特性 被引量:1
6
作者 孙俭 张海勇 +4 位作者 王成秀 孙泽能 蓝兴英 高金森 祝京旭 《化工进展》 北大核心 2025年第2期625-634,共10页
循环流化床因其优良的气固接触特性在工业生产中的应用十分广泛。颗粒聚团的存在影响着气固相互作用和传热传质,进而影响产品收率和选择性。为了更高效和深入地研究循环流化床内的颗粒聚团现象,本研究利用高速摄像系统对U_(g)=5~9m/s、G... 循环流化床因其优良的气固接触特性在工业生产中的应用十分广泛。颗粒聚团的存在影响着气固相互作用和传热传质,进而影响产品收率和选择性。为了更高效和深入地研究循环流化床内的颗粒聚团现象,本研究利用高速摄像系统对U_(g)=5~9m/s、G_(s)=50~300kg/(m^(2)·s)的二维循环流化床内的流场结构进行了可视化采样。采用k-means机器学习算法辅助图像处理,实现复杂流场中颗粒聚团的识别以及定量表征。结果表明,当U_(g)=9m/s时,随着G_(s)由50kg/(m^(2)·s)增大至300kg/(m^(2)·s),颗粒聚团频率由116Hz增加到327Hz,增长了近2倍。平均颗粒聚团浓度在横向截面中心区域y/Y=0~0.7处分布较为均匀,在y/Y=0.7~0.9的边壁处迅速增大。边壁处平均颗粒聚团浓度的变化幅度约为中心区域的3倍。平均颗粒聚团速度以及平均颗粒等效直径在横向上均表现出相同的变化趋势,均由中心向边壁递减。结合实验数据,对不同聚团参数进行拟合,获得了定量预测各个参数的关联式。对比实验数据与预测数据发现,本实验建立的定量关联式获得的预测结果相对误差均在30%以下。本研究结果定量地揭示了循环流化床内各颗粒聚团特性的分布规律,可以为循环流化床气固流动模型开发和过程强化提供数据参考。 展开更多
关键词 流态化 循环流化床 k-means机器学习 颗粒聚团 预测
在线阅读 下载PDF
基于优化k-means的沂水麒麟雪茄庄园气象适宜性分析
7
作者 郑明君 柳平增 +2 位作者 张艳 陈秀斋 仇京范 《中国农机化学报》 北大核心 2025年第8期346-352,共7页
为探究国内雪茄烟叶适宜种植区域,以沂水麒麟雪茄庄园为范例开展气象适宜性分析。通过采用内部指标DB Index优化聚类数k值,结合k-means++算法选择初始聚类中心点,对沂水麒麟雪茄庄园、比那尔德里奥、圣地亚哥、巴伊亚等11个国内外雪茄... 为探究国内雪茄烟叶适宜种植区域,以沂水麒麟雪茄庄园为范例开展气象适宜性分析。通过采用内部指标DB Index优化聚类数k值,结合k-means++算法选择初始聚类中心点,对沂水麒麟雪茄庄园、比那尔德里奥、圣地亚哥、巴伊亚等11个国内外雪茄产区大田期的关键气象因子进行聚类分析。结果表明:11个产区被划分为4个簇,其中沂水与比那尔德里奥、圣地亚哥、巴伊亚、什邡等高品质雪茄产区同属2号簇,显示其具有相似的气象条件。进一步通过隶属函数与气象适宜性指数评价表明,沂水麒麟雪茄庄园的适宜性指数CFI达0.931,属于最适宜种植等级。田间验证显示,该庄园8个雪茄品种的农艺性状指标均符合优质雪茄烟叶标准。本研究证实沂水麒麟雪茄庄园具备优质雪茄烟叶生产的气象条件,为国内雪茄产区选择提供科学依据。 展开更多
关键词 聚类算法 雪茄烟叶 生态适宜性 机器学习
在线阅读 下载PDF
基于K-means/RPF的大型遮蔽空间人员定位算法 被引量:1
8
作者 白泽坤 苏中 吴学佳 《传感器与微系统》 北大核心 2025年第1期157-160,164,共5页
针对大型遮蔽空间惯性/地图匹配算法中粒子贫化和子粒子群迷路效应导致定位精度下降的问题,提出一种基于K-means聚类的回溯粒子滤波(RPF)人员定位算法。首先,用行人航位推算(PDR)中航向更新、步频检测及步长估计得到初始运动轨迹;然后,... 针对大型遮蔽空间惯性/地图匹配算法中粒子贫化和子粒子群迷路效应导致定位精度下降的问题,提出一种基于K-means聚类的回溯粒子滤波(RPF)人员定位算法。首先,用行人航位推算(PDR)中航向更新、步频检测及步长估计得到初始运动轨迹;然后,设计RPF算法,提高存活粒子有效性和多样性,缓解粒子贫化,提高人员定位精度;最后,通过K-means聚类算法解决子粒子群的迷路效应,修正人员轨迹出现在非可行域的现象。实验结果表明:本文算法抑制了粒子贫化和子粒子群迷路效应,人员平均定位误差相比惯性定位和标准粒子滤波降低了81.20%和51.48%。 展开更多
关键词 大型遮蔽空间 K-means聚类 回溯粒子滤波 粒子贫化 迷路效应
在线阅读 下载PDF
基于K-means++聚类分析的轮轨垂向力基线漂移预处理研究
9
作者 施亦非 王锋 +1 位作者 石佳 黄宇峰 《振动与冲击》 北大核心 2025年第9期127-134,168,共9页
采集轮轨垂向力等强冲击能量的振动信号时,受传感器特性和环境影响,测得信号中存在基线漂移,严重影响后续数据分析处理。曲线拟合和密度聚类是修正基线漂移的常见方法,通过选取特定信号区间作为基点进行拟合,可有效去除基线漂移;然而,... 采集轮轨垂向力等强冲击能量的振动信号时,受传感器特性和环境影响,测得信号中存在基线漂移,严重影响后续数据分析处理。曲线拟合和密度聚类是修正基线漂移的常见方法,通过选取特定信号区间作为基点进行拟合,可有效去除基线漂移;然而,由于基点选取极度依赖先验知识,限制了其应用范围。为解决该问题,提出一种基于K-means++聚类分析的轮轨垂向力基线漂移预处理方法。首先,选取基尼系数和方差,在欧氏空间准确表征载荷与无载荷数据段的差异,进而引导K-means++聚类;随后,基于K-means++聚类选取无载荷数据段,量化信号的基线漂移干扰;最后,以无载荷数据段为基点,拟合并修正基线漂移。经过仿真和实测数据分析,与最小二乘法、经验模态分解和密度聚类相比,该方法在信噪比、均方误差、基线去除误差和运行时间等方面均有一定优势。结果表明,基于基尼系数和方差的K-means++聚类分析,克服了密度聚类分析的先验知识依赖,可有效修正轮轨垂向力基线漂移,有望用于其他强冲击能量振动信号的数据预处理。 展开更多
关键词 轮轨力 基线漂移 K-means++ 基尼系数 聚类分析
在线阅读 下载PDF
基于改进平衡优化算法的K-means聚类及其应用
10
作者 朱学敏 刘升 +1 位作者 朱学林 游晓明 《运筹与管理》 北大核心 2025年第3期37-44,I0020-I0025,共8页
为解决传统的K-means聚类算法初始质心随机性大、易陷入局部最优的缺陷,提出基于改进的平衡优化算法的K-means聚类(IEO-K-means)。首先对平衡优化算法进行改进,引入多样性度量策略评估种群的多样性,若种群多样性超过阈值,则使用拟反射... 为解决传统的K-means聚类算法初始质心随机性大、易陷入局部最优的缺陷,提出基于改进的平衡优化算法的K-means聚类(IEO-K-means)。首先对平衡优化算法进行改进,引入多样性度量策略评估种群的多样性,若种群多样性超过阈值,则使用拟反射和拟反向的混合反向学习机制初始化种群,提升种群的多样性;进一步,引入非线性时间参数和黄金正弦策略更新平衡池内粒子浓度,以增强种群在迭代前期的全局搜索能力,且保证种群在迭代后期能够持续地开发。随后,将改进的平衡优化算法用以优化K-means聚类的初始质心,增强K-means跳出局部最优的能力。最后使用6个不同特点的UCI数据与超市顾客购物数据集进行了测试,并与一些著名算法进行了比较。实验结果表明IEO-K-means算法收敛速度更快,聚类效果更好,具有良好的寻优性能。 展开更多
关键词 K-means 聚类 平衡优化算法 混合反向学习 黄金正弦
在线阅读 下载PDF
融合无监督学习模型X-Means的机会网络路由算法
11
作者 常亚楠 段幸灼 +1 位作者 崔建群 彭德民 《小型微型计算机系统》 北大核心 2025年第7期1734-1744,共11页
在机会网络中,网络拓扑结构动态变化,节点之间间歇性连接,这种间歇性连接是由于缺乏网络基础设施和终端设备随机移动所造成的,机会网络的这些特性使得路由算法的设计成为一项具有挑战性的研究课题.本文提出一种基于无监督学习模型X-Mean... 在机会网络中,网络拓扑结构动态变化,节点之间间歇性连接,这种间歇性连接是由于缺乏网络基础设施和终端设备随机移动所造成的,机会网络的这些特性使得路由算法的设计成为一项具有挑战性的研究课题.本文提出一种基于无监督学习模型X-Means的机会网络路由算法XMROP(Opportunistic network routing algorithm based on unsupervised learning model X-Means),致力于利用机器学习模型来做出路由决策.该路由算法提出新的聚类模型应用模式,解决现阶段机会网络中应用聚类模型所存在的问题,综合考虑连接强度、节点活跃度、缓存等属性特征,定义新的节点中心度度量来衡量节点活跃程度,使用X-Means聚类模型对样本数据集进行训练,以适应机会网络拓扑结构的动态变化,提升路由算法性能.仿真实验结果表明,与KROP,DBSCAN-R,Prophet路由算法相比,XMROP具有更好的性能,从而验证了研究方案的有效性. 展开更多
关键词 机会网络 无监督学习 聚类 X-means 上下文感知路由
在线阅读 下载PDF
基于k-means聚类熵权评价的飞行器质心调整优化方法
12
作者 田小川 郁立勇 +2 位作者 白斌 陈思 何文凯 《导弹与航天运载技术(中英文)》 北大核心 2025年第1期37-41,共5页
针对飞行器质心调整流程复杂、耗时长的问题,运用k-means聚类方法,对飞行器配重历史数据进行聚类,基于样本聚类结果,计算出不同样本下飞行器标准配重,再通过模拟装配计算增加标准配重后的飞行器质心偏移,并得出一系列统计数据,最后采用... 针对飞行器质心调整流程复杂、耗时长的问题,运用k-means聚类方法,对飞行器配重历史数据进行聚类,基于样本聚类结果,计算出不同样本下飞行器标准配重,再通过模拟装配计算增加标准配重后的飞行器质心偏移,并得出一系列统计数据,最后采用基于熵权的综合评价方法对比质心调整效果,选出最优的飞行器标准配重,进而简化飞行器质心调整流程,大幅提升飞行器生产效率。 展开更多
关键词 K-means 熵权评价模型 飞行器质心调整 聚类
在线阅读 下载PDF
基于k-means聚类与标记分水岭算法的二氧化氯浓度测试方法
13
作者 何家萌 黄豪中 +1 位作者 陈其勇 许桂霞 《广西大学学报(自然科学版)》 北大核心 2025年第1期186-199,共14页
人为使用二氧化氯检测试纸与标准比色卡进行比对时无法得出具体的浓度结果,且受主观因素影响较大,测量结果准确性差的问题,对二氧化氯检测试纸进行图像采集,根据其颜色与形状特征,提出基于三通道彩色图片的k-means聚类算法与标记分水岭... 人为使用二氧化氯检测试纸与标准比色卡进行比对时无法得出具体的浓度结果,且受主观因素影响较大,测量结果准确性差的问题,对二氧化氯检测试纸进行图像采集,根据其颜色与形状特征,提出基于三通道彩色图片的k-means聚类算法与标记分水岭算法结合的分割算法,快速准确地完成对二氧化氯检测试纸的分割及定位,并对二氧化氯检测试纸的颜色值与对应溶液的浓度进行相关性分析与曲线拟合,在定位二氧化氯检测试纸后,提取其颜色值并根据拟合曲线计算出对应的二氧化氯溶液浓度。结果表明,该算法分割速度快,分割效果好,对二氧化氯溶液浓度的测量准确,质量浓度对误差不超过15 mg/L,引用误差不超过4%,能有效避免人为比对时产生的主观因素干扰以及估算误差。 展开更多
关键词 二氧化氯检测试纸 消杀效果评价 K-means聚类算法 标记分水岭算法
在线阅读 下载PDF
Temperature error compensation method for fiber optic gyroscope based on a composite model of k-means,support vector regression and particle swarm optimization
14
作者 CAO Yin LI Lijing LIANG Sheng 《Journal of Systems Engineering and Electronics》 2025年第2期510-522,共13页
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely... As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields. 展开更多
关键词 fiber optic gyroscope(FOG) temperature error com-pensation composite model machine learning clustering regression.
在线阅读 下载PDF
基于自组织K-means的城市道路VRU事故场景复杂度评价
15
作者 程瑞 卢春成 +3 位作者 袁泉 崔涛 To.Jeremy 王涛 《汽车安全与节能学报》 北大核心 2025年第3期386-395,共10页
为了满足智能汽车避撞系统验证中高风险测试环境的需要,同时丰富面向弱势道路使用者(VRU)的自动驾驶场景评价内容和方法,该文通过对广西桂林市2016—2020年交通事故案例收集整理,筛选得到1429例汽车与VRU碰撞事故数据;依据事故调查经验... 为了满足智能汽车避撞系统验证中高风险测试环境的需要,同时丰富面向弱势道路使用者(VRU)的自动驾驶场景评价内容和方法,该文通过对广西桂林市2016—2020年交通事故案例收集整理,筛选得到1429例汽车与VRU碰撞事故数据;依据事故调查经验选取了13种风险因素,基于自组织K-means聚类分析构建了10类适用于中国城市交通状况的汽车与VRU碰撞的典型场景;利用信息熵理论建立了VRU典型场景复杂度评价模型,通过联合logistic模型与反向神经(BP)网络确定变量状态及各维度权重,计算得到各类场景复杂度;运用Guass混合模型对复杂度进行聚类,最终获得4个场景复杂度等级。结果表明:在限速30km/h的道路上,夜间直行汽车与横穿马路的电动自行车在非人行横道区域发生侧面碰撞的场景复杂度最高。该文的研究成果可为智能汽车安全性测试提供具备中国城市道路特征的实验场景,同时为车外VRU避撞方案和决策的制定提供一定的依据。 展开更多
关键词 弱势道路使用者(VRU) 智能汽车 典型场景 自组织K-means聚类分析
在线阅读 下载PDF
基于渐近式k-means聚类的多行动者确定性策略梯度算法
16
作者 刘全 刘晓松 +1 位作者 吴光军 刘禹含 《吉林大学学报(理学版)》 北大核心 2025年第3期885-894,共10页
针对深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法在一些大状态空间任务中存在学习效果不佳及波动较大等问题,提出一种基于渐近式k-means聚类算法的多行动者深度确定性策略梯度(multi-actor deep deterministic po... 针对深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法在一些大状态空间任务中存在学习效果不佳及波动较大等问题,提出一种基于渐近式k-means聚类算法的多行动者深度确定性策略梯度(multi-actor deep deterministic policy gradient based on progressive k-means clustering,MDDPG-PK-Means)算法.在训练过程中,对每一时间步下的状态进行动作选择时,根据k-means算法判别结果辅佐行动者网络的决策,同时随训练时间步的增加,逐渐增加k-means算法类簇中心的个数.将MDDPG-PK-Means算法应用于MuJoCo仿真平台上,实验结果表明,与DDPG等算法相比,MDDPG-PK-Means算法在大多数连续任务中都具有更好的效果. 展开更多
关键词 深度强化学习 确定性策略梯度算法 K-means聚类 多行动者
在线阅读 下载PDF
基于对抗神经网络和K-means++的配电网光伏接入能力评估方法
17
作者 张家美 孙凯 孙沛 《电工电能新技术》 北大核心 2025年第2期65-73,共9页
分布式光伏的大量接入对配电网的规划与运行产生了重大影响,如何评估现有配电网的光伏最大可接入能力是指导分布式光伏安全消纳的基础。考虑光伏出力不确性对评估结果的影响,本文提出基于生成式对抗网络(GAN)和K-means++聚类的配电网光... 分布式光伏的大量接入对配电网的规划与运行产生了重大影响,如何评估现有配电网的光伏最大可接入能力是指导分布式光伏安全消纳的基础。考虑光伏出力不确性对评估结果的影响,本文提出基于生成式对抗网络(GAN)和K-means++聚类的配电网光伏可接入容量评估方法。该方法通过GAN的生成器和判别器之间的博弈,学习光伏时序数据的分布特征,并产生足量可以反映真实天气情况的伪造光伏出力场景。通过K-means++聚类方法进行场景削减与典型场景生成。基于典型场景,在满足安全运行约束的情况下构建以光伏接入容量最大为目标的优化模型。运用二阶锥松弛将非线性的配电网潮流模型转化为凸优化模型。最后,基于IEEE 33节点配电网对所提出方法进行测试,并与机会约束优化、鲁棒优化等随机优化方法进行对比。结果验证了本文所提的优化评估方法可以综合考虑不同天气类型的影响,提供更符合实际运行要求的光伏接入方案。 展开更多
关键词 生成式对抗网络 K-means++ 分布式光伏 容量评估 典型场景
在线阅读 下载PDF
基于K-means聚类的黄河流域气候—生态—水文综合分区
18
作者 张祺祺 孙文义 +1 位作者 穆兴民 曾文颖 《节水灌溉》 北大核心 2025年第7期59-65,共7页
气候—生态—水文综合分区是自然地理学与资源环境科学交叉领域的重要研究方向,有助于揭示不同区域在气候变化、生态演替和水文过程中的相互作用。单一因素的分区方法无法有效反映各个要素之间的协同效应及其对环境系统的综合影响。因此... 气候—生态—水文综合分区是自然地理学与资源环境科学交叉领域的重要研究方向,有助于揭示不同区域在气候变化、生态演替和水文过程中的相互作用。单一因素的分区方法无法有效反映各个要素之间的协同效应及其对环境系统的综合影响。因此,基于1960-2020年降水与气温、土地利用、植被类型、NDVI、土壤类型和DEM等指标,采用Köppen气候分类和K-means聚类分析,将气候、生态、水文等多种要素有机结合,构建了黄河流域气候—生态—水文综合分区评价指标体系。结果表明:基于Köppen气候分类标准,黄河流域可划分为源区极地带、中部干带、中部冷温带以及东部冷温带4个一级气候区。综合土地利用、植被类型、NDVI、土壤类型、DEM等指标,采用K-means聚类,黄河流域可分为7个生态二级分区。基于DEM和水系,采用流域分割法,可得到72个水文一级区。将黄河流域气候分区、生态分区和水文分区进行叠加,最终得到18个气候—生态—水文综合分区。黄河流域气候—生态—水文综合分区不仅揭示了自然环境的本底规律,还为生态环境保护提供了科学方案。 展开更多
关键词 气候-生态-水文综合分区 Köppen气候分类 K-means聚类分析 黄河流域
在线阅读 下载PDF
基于同态加密和K-means聚类算法的用户充电模式聚类和需求响应潜力评估
19
作者 杨景旭 郑楷洪 +1 位作者 周尚礼 曾璐琨 《电力自动化设备》 北大核心 2025年第4期101-109,117,共10页
为解决利用单充电站数据进行用户充电模式提取不准确、不全面的问题,提出在保证用户隐私安全的前提下充分利用区域内多个充电站充电数据来提取用户的充电模式,基于同态加密和K-means聚类算法提出用户充电模式聚类模型和需求响应潜力评... 为解决利用单充电站数据进行用户充电模式提取不准确、不全面的问题,提出在保证用户隐私安全的前提下充分利用区域内多个充电站充电数据来提取用户的充电模式,基于同态加密和K-means聚类算法提出用户充电模式聚类模型和需求响应潜力评估方法。综合考虑不同充电模式在起始充电时间、充电时长和充电功率方面的差异,提出充电模式综合误差作为新的充电模式聚类标准,基于此提出基于手肘法的最优聚类数确定方法。提出基于同态加密算法的用户充电模式提取方案,阐述了方案的参与主体、密钥和随机数管理、数据链式加密操作、算法步骤。提出综合考虑用户日充电频率、充电模式的需求响应时段重合度、充电功率以及充电概率的用户需求响应潜力评估和排序方法,基于此提出充电站充电负荷需求响应潜力计算方法。通过算例验证了所提方法的有效性。 展开更多
关键词 电动汽车 同态加密 充电模式 需求响应 充电站 聚类 K-means聚类算法
在线阅读 下载PDF
基于K-means聚类粒子群算法的海洋结构迭代型损伤识别方法
20
作者 周旭涛 赵海旭 +2 位作者 蒋玉峰 王树青 刘雨 《中国海洋大学学报(自然科学版)》 北大核心 2025年第4期134-147,共14页
为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷... 为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷入局部最优解,同时,采用迭代思想对传统损伤识别方法进行改进,将损伤识别结果进行迭代更新,以获得准确的损伤位置及损伤程度。以某三腿海上风机结构为例:首先,探讨了非迭代型方法在无噪声和有噪声污染时的结构损伤识别效果;其次,分析所提出的迭代型方法在无噪声和有噪声污染两种情况下的结构损伤识别效果;然后,探究了所提出方法的收敛性及稳定性;最后,采用物理模型试验对提出的方法进行了验证。结果表明,提出的迭代型聚类粒子群算法相比传统结构损伤识别方法可获得更准确的损伤位置及损伤程度,并展现出良好的噪声鲁棒性,且算法迭代次数少,识别效果稳定。 展开更多
关键词 K-means聚类粒子群算法 损伤识别 海上风机结构 迭代型方法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部