Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of...Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.展开更多
Well-crystallized hexagonal hematite (α-Fe2O3) platelets were synthesized by hydrothermal process, using a highly concentrated ferric hydroxide as precursor. The precursor was prepared by adding ammonia to the ferr...Well-crystallized hexagonal hematite (α-Fe2O3) platelets were synthesized by hydrothermal process, using a highly concentrated ferric hydroxide as precursor. The precursor was prepared by adding ammonia to the ferric sulfate solution which was obtained by leaching pyrite cinders with sulfuric acid. Structure and morphology of the synthesized products were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope and selected area electron diffraction. The results reveal that the reaction temperature has significant effects on the structure, size and shape of the synthesized hematite particles. Typical hexagonal hematite platelets, about 0.4-0.6 μm in diameter and 0.1 μm in thickness, were prepared at 230 ℃ for 0.5 h. Al^3+, contained in the sulfuric acid leaching solution as an impurity, plays an extremely important role in the formation of hexagonal hematite. In addition, a possible mechanism about the formation of hexagonal hematite platelets was proposed.展开更多
The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from...The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts.The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy,X-ray diffractometry and scanning electron microscopy.The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer.The nanocomposite fibers consisting of ferrite(CoFe2O4) and perovskite(BaTiO3) are formed at the calcination temperature of 900 ℃ for 2 h.The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 ℃.The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology.The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size,while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 ℃.The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites.展开更多
Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laborat...Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect.The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 m L. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.展开更多
基金Project (2009ZX07315-002-01) supported by Water Pollution Control and Management of Major Special Science and Technology
文摘Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.
基金Project(2008A090300016) supported by the Key Science and Technology Item of Guangdong Province,ChinaProject(ZKJ2010022) supported by the Precious Apparatus Opening Center Foundation of Central South University,China
文摘Well-crystallized hexagonal hematite (α-Fe2O3) platelets were synthesized by hydrothermal process, using a highly concentrated ferric hydroxide as precursor. The precursor was prepared by adding ammonia to the ferric sulfate solution which was obtained by leaching pyrite cinders with sulfuric acid. Structure and morphology of the synthesized products were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope and selected area electron diffraction. The results reveal that the reaction temperature has significant effects on the structure, size and shape of the synthesized hematite particles. Typical hexagonal hematite platelets, about 0.4-0.6 μm in diameter and 0.1 μm in thickness, were prepared at 230 ℃ for 0.5 h. Al^3+, contained in the sulfuric acid leaching solution as an impurity, plays an extremely important role in the formation of hexagonal hematite. In addition, a possible mechanism about the formation of hexagonal hematite platelets was proposed.
基金Project(50674048) supported by the National Natural Science Foundation of China Project(20080431069) supported by China Postdoctoral Science FoundationProject(CX10B-257Z) supported by Postgraduate Cultivation and Innovation Foundation of Jiangsu Province,China
文摘The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts.The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy,X-ray diffractometry and scanning electron microscopy.The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer.The nanocomposite fibers consisting of ferrite(CoFe2O4) and perovskite(BaTiO3) are formed at the calcination temperature of 900 ℃ for 2 h.The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 ℃.The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology.The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size,while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 ℃.The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites.
基金Project(2011CB201505)supported by the National Key Basic Research Program of ChinaProject(BA2011031)supported by the Special Fund of Transformation of Scientific and Technological Achievements of Jiangsu Province,China
文摘Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect.The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 m L. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.