Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging f...Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).展开更多
Ammonium nitrate and fuel oil(ANFO)based explosive is a classic example of non-ideal high explosives.Its detonation is characterized by a strong dependence of detonation parameters on explosive charge diameter,presenc...Ammonium nitrate and fuel oil(ANFO)based explosive is a classic example of non-ideal high explosives.Its detonation is characterized by a strong dependence of detonation parameters on explosive charge diameter,presence and characteristics of confinement,as well as incomplete consumption of explosive at the sonic point.In this work we propose a detonation model based on the Wood-Kirkwood(WK)theory coupled with the thermochemical code EXPLO5 and supplemented with reaction rate models.Our objective is to analyze the validity of the model for highly non-ideal ANFO explosives,with emphasis on effect of reaction rate models.It was found that both single-step and two-step pressure-based models can be calibrated to reproduce experimental detonation velocity-charge radius data of ANFO at radii significantly above the failure radius(i.e.for D/D_(id)>~0.6).Single-step pressure-based model,with the pressure exponent equal to 1.4,proved to be the most accurate,even in the vicinity of the failure radius.The impact of the rate models is most evident on temporal(and spatial)distribution of flow parameters in detonation driving zone,especially when it comes to the conversion and width of detonation driving zone.展开更多
2000年后全球气温的增温率显著下降,全球进入变暖减缓期。本文基于CRU(Climatic Research Unit)观测资料,分析讨论了2000年后全球及欧亚中高纬度地区全球变暖的减缓特征,评估了CMIP5(Coupled Model Intercomparison Project Phase 5...2000年后全球气温的增温率显著下降,全球进入变暖减缓期。本文基于CRU(Climatic Research Unit)观测资料,分析讨论了2000年后全球及欧亚中高纬度地区全球变暖的减缓特征,评估了CMIP5(Coupled Model Intercomparison Project Phase 5)试验多模式对全球变暖减缓的模拟及未来气温变化预估。结果表明,2000年后全球陆地平均地面气温的增温率大幅下降至0.14°C(10 a)-1,仅为1976~1999年加速期增温率的一半。全球陆地13个区域中有9个地区的增温率小于2000年前,4个地区甚至出现了降温。其中以欧亚中高纬地区最为特殊。加速期(1976~1999年)增温率达到0.50°C(10 a)-1,为全球陆地最大,2000年后陡降至-0.17°C(10 a)-1,为全球最强降温区,为全球变暖的减缓贡献了49.13%。并且具有显著的季节依赖,减缓期冬季增温率下降了-2.68°C(10a)-1,而秋季升高了0.86°C(10 a)-1,呈现反位相变化特征。CMIP5多模式计划中仅BCC-CSM1.1在RCP2.6情景下和MRI-ESM1模式在RCP8.5下的模拟较好地预估了全球及欧亚中高纬地区在2000年后增温率的下降以及欧亚中高纬秋、冬温度的反位相变化特征。BCC-CSM1.1在RCP2.6情景下预估欧亚中高纬地区2012年后温度距平保持在1.2°C左右,2020年后跃至2°C附近振荡。而MRI-ESM1在RCP8.5情景下预估的欧亚中高纬度温度在2030年前一直维持几乎为零的增温率,之后迅速升高。展开更多
文摘Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).
基金the Croatian Science Foundation(HRZZ),Croatia,under the projects IP-2019-04-1618 and I-2243-2017.
文摘Ammonium nitrate and fuel oil(ANFO)based explosive is a classic example of non-ideal high explosives.Its detonation is characterized by a strong dependence of detonation parameters on explosive charge diameter,presence and characteristics of confinement,as well as incomplete consumption of explosive at the sonic point.In this work we propose a detonation model based on the Wood-Kirkwood(WK)theory coupled with the thermochemical code EXPLO5 and supplemented with reaction rate models.Our objective is to analyze the validity of the model for highly non-ideal ANFO explosives,with emphasis on effect of reaction rate models.It was found that both single-step and two-step pressure-based models can be calibrated to reproduce experimental detonation velocity-charge radius data of ANFO at radii significantly above the failure radius(i.e.for D/D_(id)>~0.6).Single-step pressure-based model,with the pressure exponent equal to 1.4,proved to be the most accurate,even in the vicinity of the failure radius.The impact of the rate models is most evident on temporal(and spatial)distribution of flow parameters in detonation driving zone,especially when it comes to the conversion and width of detonation driving zone.