3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geo...3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities contain- ing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geo- logical exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of model- ing approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling tech- nique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound compre- hension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.展开更多
土壤是具有高度异质性的复合体。早期的数字土壤制图研究主要关注水平方向的土壤空间变异和制图,对垂直方向空间变异和土壤三维制图考虑较少。近年来,三维地理信息技术和对地观测与探测技术的快速发展,极大地促进了土壤三维空间数据获...土壤是具有高度异质性的复合体。早期的数字土壤制图研究主要关注水平方向的土壤空间变异和制图,对垂直方向空间变异和土壤三维制图考虑较少。近年来,三维地理信息技术和对地观测与探测技术的快速发展,极大地促进了土壤三维空间数据获取、三维空间推测、三维数据模型、三维模型构建和可视化方法等方面的研究。本文对三维空间土壤推测与土壤模型构建的已有方法进行梳理和评述,以期为三维数字土壤制图的应用和发展提供建议。以三维土壤制图、三维GIS、三维数据模型、三维地质建模、三维可视化、土壤空间变异、空间推测、克里格插值、土壤-景观分析、深度函数、机器学习、地统计学、随机模拟等为关键词检索Web of Science数据库,基于相关度、引用率和文献来源等因素进一步筛选出重点文献进行分析。归纳整理了土壤空间变异性、三维空间土壤推测、三维空间数据模型和三维模型构建等关键技术的现有研究体系,对各种三维推测和建模方法的优缺点和适用场景作出评价。针对目前研究中存在的垂直方向土壤数据稀少、土壤三维推测精度低、三维模型质量待提高等问题,提出一些可行的研究思路。展开更多
Regional Geological Information System combines the multi-dimensional and dynamic spatial information into an integrated spatial information system. 3D geological modeling and its preprocessing or post-processing are ...Regional Geological Information System combines the multi-dimensional and dynamic spatial information into an integrated spatial information system. 3D geological modeling and its preprocessing or post-processing are the most difficult problems for constructing the system. Based on the current 3D GIS technique, some basic problems in establishing the system are discussed in this paper, including 3D spatial data model, 3D geological modeling, and visu- alization of 3D geological data. A kind of 3D vector data model based on boundary representation for geological object and its topology was developed in order to model and visualize complex geological structures. In addition, some key techniques are pointed out for further study.展开更多
基金Project 2001AA135170 supported by the National High-Tech Research and Development (863) Program of China and 06ZR14031 by the Natural ScienceFoundation of Shanghai Municipality
文摘3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities contain- ing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geo- logical exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of model- ing approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling tech- nique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound compre- hension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.
文摘土壤是具有高度异质性的复合体。早期的数字土壤制图研究主要关注水平方向的土壤空间变异和制图,对垂直方向空间变异和土壤三维制图考虑较少。近年来,三维地理信息技术和对地观测与探测技术的快速发展,极大地促进了土壤三维空间数据获取、三维空间推测、三维数据模型、三维模型构建和可视化方法等方面的研究。本文对三维空间土壤推测与土壤模型构建的已有方法进行梳理和评述,以期为三维数字土壤制图的应用和发展提供建议。以三维土壤制图、三维GIS、三维数据模型、三维地质建模、三维可视化、土壤空间变异、空间推测、克里格插值、土壤-景观分析、深度函数、机器学习、地统计学、随机模拟等为关键词检索Web of Science数据库,基于相关度、引用率和文献来源等因素进一步筛选出重点文献进行分析。归纳整理了土壤空间变异性、三维空间土壤推测、三维空间数据模型和三维模型构建等关键技术的现有研究体系,对各种三维推测和建模方法的优缺点和适用场景作出评价。针对目前研究中存在的垂直方向土壤数据稀少、土壤三维推测精度低、三维模型质量待提高等问题,提出一些可行的研究思路。
基金Project 2001AA135170 supported by the National High-Tech Research and Development 863 Program of China
文摘Regional Geological Information System combines the multi-dimensional and dynamic spatial information into an integrated spatial information system. 3D geological modeling and its preprocessing or post-processing are the most difficult problems for constructing the system. Based on the current 3D GIS technique, some basic problems in establishing the system are discussed in this paper, including 3D spatial data model, 3D geological modeling, and visu- alization of 3D geological data. A kind of 3D vector data model based on boundary representation for geological object and its topology was developed in order to model and visualize complex geological structures. In addition, some key techniques are pointed out for further study.