Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions...Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper.展开更多
The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the ...The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters.展开更多
A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small sphe...A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation(V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.展开更多
In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 40...In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 400km depth in the crust and upper mantle of Qinghai\|Tibet plateau and Its Adjacent Regions (22°~44°N,70°~110°E).The first step of the waveform inversion used involved the matching of the waveforms of fundamental and highermost Ravleigh waves with waveforms synthesized from stratified models;in the second stage,the 3\|D model was constructed by solve linear constrains equation. The major structural features inferred from the surface waveform inversions can be summarized as follows:(1) There is a great contrast between surface waveform through Qinghai—Thibet plateau and the others.Main frequency of the former is lower than the latter, which indicate the crust depth of Qinghai—Tibet plateau is deeper than the others. In addition,the amplitude of about 30s period and 50s period is lower than both sides,which implied these exist lower velocity layer at about 25km depth and about 50km depth in Qinghai—Tibet plateau Crust.The former is common,the latter was argued because resolution of most method can not prove it.展开更多
基金Key Project Process Mechanism and Prediction of Geological Hazards (2001CB711005-1-3) and State Key Basic Research Project Mechanism and Prediction of Continental Earthquakes (G1998040702). sponsored by the Ministry of Science and Techno
基金The special project of Detection of Haikou City Earthquake Active Faults from the Tenth Five-year Plan of China Earthquake Administration (0106512)Joint Seismological Science Foundation of China (105086)CAS Key Laboratory of Marginal Sea Geology (MSGL0503).
文摘Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper.
基金National Natural Science Foundation of China (40074010) and Natural Science Foundation of Gansu Province (ZS981-A25-011)
文摘The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters.
基金Projects(51304239,51374243)supported by the National Natural Science Foundation of China
文摘A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation(V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.
文摘In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 400km depth in the crust and upper mantle of Qinghai\|Tibet plateau and Its Adjacent Regions (22°~44°N,70°~110°E).The first step of the waveform inversion used involved the matching of the waveforms of fundamental and highermost Ravleigh waves with waveforms synthesized from stratified models;in the second stage,the 3\|D model was constructed by solve linear constrains equation. The major structural features inferred from the surface waveform inversions can be summarized as follows:(1) There is a great contrast between surface waveform through Qinghai—Thibet plateau and the others.Main frequency of the former is lower than the latter, which indicate the crust depth of Qinghai—Tibet plateau is deeper than the others. In addition,the amplitude of about 30s period and 50s period is lower than both sides,which implied these exist lower velocity layer at about 25km depth and about 50km depth in Qinghai—Tibet plateau Crust.The former is common,the latter was argued because resolution of most method can not prove it.