The formation heterogeneity is considered as one of the major factors limiting the application of foam flooding.In this paper,influences of formation properties,such as permeability,permeability distribution,interlaye...The formation heterogeneity is considered as one of the major factors limiting the application of foam flooding.In this paper,influences of formation properties,such as permeability,permeability distribution,interlayer,sedimentary rhythm and 3D heterogeneity,on the mobility control capability and oil displacement efficiency of foam flooding,were systematically investigated using 2D homogeneous and 2D/3D heterogeneous models under 120°C and salinity of 20×10~4 mg/L.The flow resistance of foam was promoted as the permeability increased,which thus resulted in a considerable oil recovery behavior.In the scenario of the vertical heterogeneous formations,it was observed that the permeability of the high-permeable layer was crucial to foam mobility control,and the positive rhythm appeared favorable to improve the foam flooding performance.The additional oil recovery increased to about 40%.The interlayer was favorable for the increases in mobility reduction factor and oil recovery of foam flooding when the low permeability ratio was involved.For the 3D heterogeneous formations,foam could efficiently adjust the areal and vertical heterogeneity through mobility control and gravity segregation,and thus enhancing the oil recovery to 11%–14%.The results derived from this work may provide some insight for the field test designs of foam flooding.展开更多
A method for precise conversion between virtual world and real world is put forward in this paper. The method aims to precisely establish the connection between the virtual coordinates and the real coordinates with Op...A method for precise conversion between virtual world and real world is put forward in this paper. The method aims to precisely establish the connection between the virtual coordinates and the real coordinates with OpenGL. In the virtual world, two virtual cameras are set to capture the left and right perspective planar images, and coordinates of the planar images can be calculated by the perspective projection model. With coordinates of planar images, coordinates of the stereo- scopic image synthesized in the real world can be calculated by the binocular observation model. Therefore, the corresponding connection between the two systems is established. Experimental re- suits match data from this method well. Therefore, this method can precisely realize the conversion and the interactivity, laying a solid foundation for further study.展开更多
基金financially supported by the Scientific Research Startup Foundation of Xinjiang University(No.620312377)the National Science and Technology Major Project of China(No.2016ZX05053-013)
文摘The formation heterogeneity is considered as one of the major factors limiting the application of foam flooding.In this paper,influences of formation properties,such as permeability,permeability distribution,interlayer,sedimentary rhythm and 3D heterogeneity,on the mobility control capability and oil displacement efficiency of foam flooding,were systematically investigated using 2D homogeneous and 2D/3D heterogeneous models under 120°C and salinity of 20×10~4 mg/L.The flow resistance of foam was promoted as the permeability increased,which thus resulted in a considerable oil recovery behavior.In the scenario of the vertical heterogeneous formations,it was observed that the permeability of the high-permeable layer was crucial to foam mobility control,and the positive rhythm appeared favorable to improve the foam flooding performance.The additional oil recovery increased to about 40%.The interlayer was favorable for the increases in mobility reduction factor and oil recovery of foam flooding when the low permeability ratio was involved.For the 3D heterogeneous formations,foam could efficiently adjust the areal and vertical heterogeneity through mobility control and gravity segregation,and thus enhancing the oil recovery to 11%–14%.The results derived from this work may provide some insight for the field test designs of foam flooding.
基金Supported by the National Natural Science Foundation of China ( 60674052)
文摘A method for precise conversion between virtual world and real world is put forward in this paper. The method aims to precisely establish the connection between the virtual coordinates and the real coordinates with OpenGL. In the virtual world, two virtual cameras are set to capture the left and right perspective planar images, and coordinates of the planar images can be calculated by the perspective projection model. With coordinates of planar images, coordinates of the stereo- scopic image synthesized in the real world can be calculated by the binocular observation model. Therefore, the corresponding connection between the two systems is established. Experimental re- suits match data from this method well. Therefore, this method can precisely realize the conversion and the interactivity, laying a solid foundation for further study.