The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This pap...The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.展开更多
Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data...Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest.展开更多
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T...In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.展开更多
文摘The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.
文摘Mooring cable tension is a crucial parameter for evaluating the safety and reliability of a floating platform mooring system.The real-time mooring tension in an actual marine environment has always been essential data that mooring system designers aim to acquire.To address the need for long-term continuous monitoring of mooring tension in deep-sea marine environments,this paper presents a mooring cable tension monitoring method based on the principle of direct mechanical measurement.The developed tension monitoring sensors were installed and applied in the mooring system of the"Yongle"scientific experimental platform.Over the course of one year,a substantial amount of in-situ tension monitoring data was obtained.Under wave heights of up to 1.24 m,the mooring tension on the floating platform reached 16.5 tons.Through frequency domain and time domain analysis,the spectral characteristics of mooring tension,including waveinduced force,slow drift force,and mooring cable elastic restoring force,were determined.The mooring cable elastic restoring force frequency was approximately half of that of the wave signal.Due to the characteristics of the hinge connection structure of the dual module floating platform,under some specific working conditions the wave-induced force was the maximum of the three different frequency forces,and restoring force was the smallest.
基金supported by the National Natural Science Foundation of China(61803015).
文摘In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.