To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions tha...To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions that can break through the bottlenecks of current methods.Firstly,based on the survey of three mainstream approaches for acquiring EM properties of media,we identify the difficulties when implementing them in realistic environments.With a focus on addressing these problems and challenges,we propose a novel paradigm for obtaining the EM properties of multi-type media in realistic environments.Particularly,within this paradigm,we describe the implementation approach of the key technology,namely“multipath extraction using heterogeneous wave propagation data in multi-spectrum cases”.Finally,the latest measurement and simulation results show that the EM properties of multi-type media in realistic environments can be precisely and efficiently acquired by the methodology proposed in this study.展开更多
Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in differen...Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in different depositional zones of Mahu Sag in the Junggar Basin,and to reconstruct their differential diagenetic evolutional processes.The diagenetic environment of shales in the lake-central zone kept alkaline,which mainly underwent the early stage(Ro<0.5%)dominated by the authigenesis of Na-carbonates and K-feldspar and the late stage(Ro>0.5%)dominated by the replacement of Na-carbonates by reedmergnerite.The shales from the marginal zone underwent a transition from weak alkaline to acidic diagenetic environments,with the early stage dominated by the authigenesis of Mg-bearing clay and silica and the late stage dominated by the dissolution of feldspar and carbonate minerals.The shales from the transitional zone also underwent a transition from an early alkaline diagenetic environment,evidenced by the formation of dolomite and zeolite,to a late acidic diagenetic environment,represented by the reedmergnerite replacement and silicification of feldspar and carbonate minerals.The differences in formation of authigenic minerals during early diagenetic stage determine the fracability of shales.The differences in dissolution of minerals during late diagenetic stage control the content of free shale oil.Dolomitic shale in the transitional zone and siltstone in the marginal zone have relatively high content of free shale oil and strong fracability,and are favorable“sweet spots”for shale oil exploitation and development.展开更多
Background There have been numerous intervention studies focusing on the development of preterm infants,but there has been limited investigation into the home environment as a determinant of developmental outcomes in ...Background There have been numerous intervention studies focusing on the development of preterm infants,but there has been limited investigation into the home environment as a determinant of developmental outcomes in preterm infants.The aspects and extent to which the home environment affects the early(18 months corrected age)neuropsychological development of preterm infants are still unclear.Aims This study aimed to analyse the effect of the home environment on the neuropsychiatric development of preterm infants at 18 months corrected age after discharge from the neonatal intensive care unit(NICU).It also sought to provide a basis for promoting neuropsychiatric development among preterm infants by improving the home environment.Methods In this retrospective cross-sectional study,275 preterm infants born between January 2019 and January 2022 were followed up for systematic management after discharge from the NICU at Shanghai Children's Hospital.The Home Nurture Environment Questionnaire was used to assess the home environment of the infants and analyse its impact on the developmental quotient(evaluated by the Gesell Developmental Scale)and the rate of developmental delays at 18 months corrected age.Results A total of 41.454%of the infants were extremely preterm.The developmental quotient scores at 18 months corrected age were in the middle of the scale.The language domain had the highest rate of developmental delay(46.182%),followed by the adaptive domain(37.091%).Multiple logistic regression analyses showed that compared with infants in supportive home environments,infants with moderate/unsupportive home environments had significantly elevated risks of development delay:2.162-fold for global(odds ratio(OR)2.162,95% confidence interval(Cl)1.274 to 3.665,p=0.004),2.193-fold for fine motor(OR 2.193,95%CI 1.161 to 4.140,p=0.016),2.249-fold for language(0R 2.249,95%CI 1.336 to 3.786,p=0.002)and 2.042-fold for personal-social(OR 2.042,95%CI 1.149 to 3.628,p=0.015).Conclusions A supportive home environment is a crucial protective factor for the neuropsychological development of preterm infants.It is associated with higher developmental quotient scores and protects against neuropsychiatric delays.Incorporating evaluation and continuous improvement of the home environment into the management framework for preterm infants to promote optimal neurodevelopment is essential.展开更多
Essentially clearing the structure-activity relationship between iron carbide catalysts involving multiple active centers to understand the reaction mechanism of CO hydrogenation conversion process is still a great ch...Essentially clearing the structure-activity relationship between iron carbide catalysts involving multiple active centers to understand the reaction mechanism of CO hydrogenation conversion process is still a great challenge.Here,two main micro-environment factors,namely electronic properties and geometrical effects were found to have an integrated effect on the mechanism of CO hydrogenation conversion,involving active sites on multiple crystal phases.The Bader charge of the surface Fe atoms on the active sites had a guiding effect on the CO activation pathway,while the spatial configuration of the active sites greatly affected the energy barriers of CO activation.Although the defective surfaces were more conducive to CO activation,the defective sites were not the only sites to dissociate CO,as CO always tended to dissociate in a wider area.This synergistic effect of the micro-environment also occurred during the CO conversion process.Surface C atoms on relatively flat configurations were more likely to form methane,while the electronic properties of the active sites could effectively describe the C-C coupling process,as well as distinguish the coupling mechanisms.展开更多
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These...Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These systems are equipped with battery-free operation,wireless connectivity,and are designed to be both miniaturized and lightweight.Such features enable the safe,real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.Despite the exploration into diverse application environments,the development of a systematic and comprehensive research framework for system architecture remains elusive,which hampers further optimization of these systems.This review,therefore,begins with an examination of application scenarios,progresses to evaluate current system architectures,and discusses the function of each component—specifically,the passive sensor module,the wireless communication model,and the readout module—within the context of key implementations in target sensing systems.Furthermore,we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios,derived from this systematic approach.By outlining a research trajectory for the application of passive wireless systems in sensing technologies,this paper aims to establish a foundation for more advanced,user-friendly applications.展开更多
Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic develo...Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic development are not yet clearly known. In this research study, the typical continental fault basins of eastern China were chosen as examples for the purpose of conducting an examination of the coal and oil shale symbiotic assemblage types, genetic environmental differences, and transformation mechanisms, as well as the development and occurrence characteristics o f different assemblage types. Through a large number of investigations, systematic experimental testing, and sequence stratigraphy studies, the following conclusions were obtained:(1) There were five types of coal and oil shale symbiotic assemblages observed in the continental fault basins,(2) The development of coal and oil shale deposits requires a warm and humid climate, stable structure, abundant organic matter supply, a certain water depth, and a lower terrestrial source debris supply. The observed differences were that the water depth conditions were diversified in the study area, as well as the sources, types, and content of the organic matter.(3) The rapid transformations of the coal and oil shale genetic environments were mainly controlled by the tectonic settings and climatic conditions, which were determined to control the changes in the water depths, salinity,redox conditions, and lake productivity of the genetic environments. Also, in the symbiotic assemblages, genetic environment changes had induced the development of oil shale deposits, which gradually evolved into coal genetic environments.(4) In the isochronous sequence stratigraphic framework of the coal and oil shale symbiotic assemblages, the lake expansion system tracts (EST) were determined to be the most beneficial to the growth o f all the types of assemblages and were characterized by more assemblage development phases and smaller bed thicknesses. From the early to the late stages of the EST, and from the lakesides to lake centers, the thicknesses of the coal seams in the symbiotic assemblages showed trends of thinning, while the thicknesses of the oil shale deposits exhibited increasing trends. The early stages of high stand system tracts were found to be beneficial to the development of the symbiotic assemblages of coal seams overlying the oil shale. This tract type generally presented large bed thicknesses and distribution ranges. The low stand system tract and the late high stand system tract were determined to be unconducive to the development of the symbiotic assemblages.展开更多
Although advances in wireless technologies such as miniature and wearable electronics have improved the quality of our lives,the ubiquitous use of electronics comes at the expense of increased exposure to electromagne...Although advances in wireless technologies such as miniature and wearable electronics have improved the quality of our lives,the ubiquitous use of electronics comes at the expense of increased exposure to electromagnetic(EM)radiation.Up to date,extensive efforts have been made to develop high-performance EM absorbers based on synthetic materials.However,the design of an EM absorber with both exceptional EM dissipation ability and good environmental adaptability remains a substantial challenge.Here,we report the design of a class of carbon heterostructures via hierarchical assembly of graphitized lignocellulose derived from bamboo.Specifically,the assemblies of nanofibers and nanosheets behave as a nanometer-sized antenna,which results in an enhancement of the conductive loss.In addition,we show that the composition of cellulose and lignin in the precursor significantly influences the shape of the assembly and the formation of covalent bonds,which affect the dielectric response-ability and the surface hydrophobicity(the apparent contact angle of water can reach 135°).Finally,we demonstrate that the obtained carbon heterostructure maintains its wideband EM absorption with an effective absorption frequency ranging from 12.5 to 16.7 GHz under conditions that simulate the real-world environment,including exposure to rainwater with slightly acidic/alkaline pH values.Overall,the advances reported in this work provide new design principles for the synthesis of high-performance EM absorbers that can find practical applications in real-world environments.展开更多
The electromagnetic environment of laneways in underground coal mines is an important area for the design of new electronic products,as well as a fundamental space for mine monitoring,surveillance,communications and c...The electromagnetic environment of laneways in underground coal mines is an important area for the design of new electronic products,as well as a fundamental space for mine monitoring,surveillance,communications and control systems.An investigation of electromagnetic interference in coal mines is essential for the enhancement of performances of these systems.In this study,a new field method is provided in which radiated emission tests in coal mine laneways have been carried out.We conclude that:1) the wiring motor vehicles can radiate interference with a bandwidth up to 1 GHz and with an amplitude 10 dBμV/m higher than the background noise;2) the PHS(Personal Handy phone System) mobile communication system can cause interference 40 dBμV/m higher than the background noise;3) an interference 25 dBμV/m higher than the background noise can be generated during the communication at a working bandwidth of 48.8 MHz;and 4) power cables,battery vehicles as well as mechanical and electrical dong rooms have little effect on the electromagnetic radiation environment in coal mine tunnels.展开更多
In order to support the future digital society,sixth generation(6G)network faces the challenge to work efficiently and flexibly in a wider range of scenarios.The traditional way of system design is to sequentially get...In order to support the future digital society,sixth generation(6G)network faces the challenge to work efficiently and flexibly in a wider range of scenarios.The traditional way of system design is to sequentially get the electromagnetic wave propagation model of typical scenarios firstly and then do the network design by simulation offline,which obviously leads to a 6G network lacking of adaptation to dynamic environments.Recently,with the aid of sensing enhancement,more environment information can be obtained.Based on this,from radio wave propagation perspective,we propose a predictive 6G network with environment sensing enhancement,the electromagnetic wave propagation characteristics prediction enabled network(EWave Net),to further release the potential of 6G.To this end,a prediction plane is created to sense,predict and utilize the physical environment information in EWave Net to realize the electromagnetic wave propagation characteristics prediction timely.A two-level closed feedback workflow is also designed to enhance the sensing and prediction ability for EWave Net.Several promising application cases of EWave Net are analyzed and the open issues to achieve this goal are addressed finally.展开更多
Recently,whether the channel prediction can be achieved in diverse communication scenarios by directly utilizing the environment information gained lots of attention due to the environment impacting the propagation ch...Recently,whether the channel prediction can be achieved in diverse communication scenarios by directly utilizing the environment information gained lots of attention due to the environment impacting the propagation characteristics of the wireless channel.This paper presents an environment information-based channel prediction(EICP)method for connecting the environment with the channel assisted by the graph neural networks(GNN).Firstly,the effective scatterers(ESs)producing paths and the primary scatterers(PSs)generating single propagation paths are detected by building the scatterercentered communication environment graphs(SCCEGs),which can simultaneously preserve the structure information and highlight the pending scatterer.The GNN-based classification model is implemented to distinguish ESs and PSs from other scatterers.Secondly,large-scale parameters(LSP)and small-scale parameters(SSP)are predicted by employing the GNNs with multi-target architecture and the graphs of detected ESs and PSs.Simulation results show that the average normalized mean squared error(NMSE)of LSP and SSP predictions are 0.12 and 0.008,which outperforms the methods of linear data learning.展开更多
As the earliest invented and utilized communication approach, shortwave, known as high frequency(HF) communication now experience the deterioration of HF electromagnetic environment. Finding quality frequency in effic...As the earliest invented and utilized communication approach, shortwave, known as high frequency(HF) communication now experience the deterioration of HF electromagnetic environment. Finding quality frequency in efficient manner becomes one of the key challenges in HF communication. Spectrum prediction infers the future spectrum status from history spectrum data by exploring the inherent correlations and regularities. The investigation of HF electromagnetic environment data reveals the correlations and predictability of HF frequency band in both time and frequency domain. To solve this problem, we develop a Spectrum Prediction-based Frequency Band Pre-selection(SP-FBP) for HF communications. The pre-selection of HF frequency band mainly incorporated in prediction of HF spectrum occupancy and prediction of HF usable frequency, which provide the frequency band ranking of spectrum occupancy and alternative frequency for spectrum sensing, respectively. Performance evaluation via real-world HF spectrum data shows that SP-FBP significantly improves the efficiency of finding quality frequency in HF communications.展开更多
The Mobile Ubiquitous Service Environment (MUSE), established through the coordination and integration of mobile telecommunications and ubiquitous network in the pursuit of Always Best Experience (ABE), represents the...The Mobile Ubiquitous Service Environment (MUSE), established through the coordination and integration of mobile telecommunications and ubiquitous network in the pursuit of Always Best Experience (ABE), represents the major development trend for the next generation mobile wireless network. Research on MUSE will involve the integration of computing model system, service platform system, operating system and terminal structure system, all of which involve exploration and innovation of new networking structure, its control and management as well as way of measuring. The change in network resources triggers the change in network computing models. To make readers have a basic understanding of mobile ubiquitous network environment, this lecture will introduce MUSE in two sections. The first section describes the background of MUSE and its future development prospect. The second section focuses on the design principles and key technologies in MUSE model, which make services realized, as well as the networking structure of MUSE model, and the key technologies and design principles of networking.展开更多
Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO...Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+ 06 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and 02 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ ions and H atoms could form a Mn2+-O2--Mn2+ complex and Mn-H-Mn bridge structure. The magnetic measurement of the as-prepared sample shows room temperature paramagnetic behavior due to the Mn3+-O2--Mn3+ complex, while the annealed samples exhibit their ferromagnetism, which originates from the Mn-H-Mn bridge structure and the Mn-Mn exchange interaction in the Mn2+-O2--Mn2+ complex.展开更多
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in...Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.展开更多
In this paper, the properties of distributed virtual environment (DVE) and the requirements on computer networks is briefly reviewed. A multicast protocol, called sender initiated grouping multicast protocol for DVE...In this paper, the properties of distributed virtual environment (DVE) and the requirements on computer networks is briefly reviewed. A multicast protocol, called sender initiated grouping multicast protocol for DVE (SIGMP), is proposed. This new multicast protocol is based on a novel concept, multicast group (MG), which divides all participants in a DVE system into groups, among which there is a multicast group trustee (MGT) node to manage the group. The protocol provides unreliable/reliable, totally ordered and multiple to multiple multicast transmission service for DVE systems without sacrificing the communication efficiency heavily. At the same time, reliable unicast and one to multiple multicast transmission services are also supported. The performance analysis of the new protocols is also presented. Based on SIGMP, a simple demonstration of DVE system is designed and implemented. This demo system is running on several SGI workstations connected by a FDDI and Ethernet network.展开更多
The anomaly detection of electromagnetic environment situation(EMES) has essential reference value for electromagnetic equipment behavior cognition and battlefield threat assessment.In this paper,we proposed a deep le...The anomaly detection of electromagnetic environment situation(EMES) has essential reference value for electromagnetic equipment behavior cognition and battlefield threat assessment.In this paper,we proposed a deep learning-based method for detecting anomalies in EMES to address the problem of relatively low efficiency of electromagnetic environment situation anomaly detection(EMES-AD).Firstly,the convolutional kernel extracts the static features of different regions of the EMES.Secondly,the dynamic features of the region are obtained by using a recurrent neural network(LSTM).Thirdly,the Spatio-temporal features of the region are recovered by using a de-convolutional network and then fused to predict the EMES.The structural similarity algorithm(SSIM) is used to determine whether it is anomalous.We developed the detection framework,de-signed the network parameters,simulated the data sets containing different anomalous types of EMES,and carried out the detection experiments.The experimental results show that the proposed method is effective.展开更多
Carbon-based materials are recognized as anodes fulling of promise for potassium ion batteries(PIBs)due to advantages of affordable cost and high conductivity.However,they still face challenges including structural un...Carbon-based materials are recognized as anodes fulling of promise for potassium ion batteries(PIBs)due to advantages of affordable cost and high conductivity.However,they still face challenges including structural unstability and slow kinetics.It is difficult to achieve efficient potassium storage with unmodified carbonaceous anode.Herein,atomic bismuth(Bi)sites with different atom coordinations anchored on carbon nanosheets(CNSs)have been synthesized through a template method.The properties of prepared multi-doping carbon anodes Bi-N_(3)S_(1)/CNSs,Bi-N_(3)P_(1)/CNSs and Bi-N_(4)/CNSs were probed in PIBs.The configuration Bi-N_(3)S_(1) with stronger charge asymmetry exhibits superior potassium storage performance compared to Bi-N_(3)P_(1) and Bi-N_(4) configurations.The Bi-N_(3)S_(1)/CNSs display a rate capacity of 129.2 mAh g^(-1)even at 10 A g^(-1)and an impressive cyclability characterized by over 5000 cycles at 5 A g^(-1),on account of its optimal coordination environment with more active Bi centers and K^(+)adsorption sites.Notably,assembled potassium-ion full cell Mg-KVO//Bi-N_(3)S_(1)/CNSs also shows an outstanding cycling stability,enduring 3000 cycles at 2 A g^(-1).Therefore,it can be demonstrated that regulating the electronic structure of metallic centre M-N_(4) via changing the type of ligating atom is a feasible strategy for modifying carbon anodes,on the base of co-doping metal and non-metal.展开更多
基金supported by the Beijing Natural Science Foundation(No.L212029)the National Natural Science Foundation of China(No.62271043).
文摘To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions that can break through the bottlenecks of current methods.Firstly,based on the survey of three mainstream approaches for acquiring EM properties of media,we identify the difficulties when implementing them in realistic environments.With a focus on addressing these problems and challenges,we propose a novel paradigm for obtaining the EM properties of multi-type media in realistic environments.Particularly,within this paradigm,we describe the implementation approach of the key technology,namely“multipath extraction using heterogeneous wave propagation data in multi-spectrum cases”.Finally,the latest measurement and simulation results show that the EM properties of multi-type media in realistic environments can be precisely and efficiently acquired by the methodology proposed in this study.
基金Supported by the National Natural Science Foundation of China(42272117,42002116).
文摘Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in different depositional zones of Mahu Sag in the Junggar Basin,and to reconstruct their differential diagenetic evolutional processes.The diagenetic environment of shales in the lake-central zone kept alkaline,which mainly underwent the early stage(Ro<0.5%)dominated by the authigenesis of Na-carbonates and K-feldspar and the late stage(Ro>0.5%)dominated by the replacement of Na-carbonates by reedmergnerite.The shales from the marginal zone underwent a transition from weak alkaline to acidic diagenetic environments,with the early stage dominated by the authigenesis of Mg-bearing clay and silica and the late stage dominated by the dissolution of feldspar and carbonate minerals.The shales from the transitional zone also underwent a transition from an early alkaline diagenetic environment,evidenced by the formation of dolomite and zeolite,to a late acidic diagenetic environment,represented by the reedmergnerite replacement and silicification of feldspar and carbonate minerals.The differences in formation of authigenic minerals during early diagenetic stage determine the fracability of shales.The differences in dissolution of minerals during late diagenetic stage control the content of free shale oil.Dolomitic shale in the transitional zone and siltstone in the marginal zone have relatively high content of free shale oil and strong fracability,and are favorable“sweet spots”for shale oil exploitation and development.
基金funded by Shanghai Municipal Health and Wellness Commission Health Industry Clinical Research Special Project(202140299).
文摘Background There have been numerous intervention studies focusing on the development of preterm infants,but there has been limited investigation into the home environment as a determinant of developmental outcomes in preterm infants.The aspects and extent to which the home environment affects the early(18 months corrected age)neuropsychological development of preterm infants are still unclear.Aims This study aimed to analyse the effect of the home environment on the neuropsychiatric development of preterm infants at 18 months corrected age after discharge from the neonatal intensive care unit(NICU).It also sought to provide a basis for promoting neuropsychiatric development among preterm infants by improving the home environment.Methods In this retrospective cross-sectional study,275 preterm infants born between January 2019 and January 2022 were followed up for systematic management after discharge from the NICU at Shanghai Children's Hospital.The Home Nurture Environment Questionnaire was used to assess the home environment of the infants and analyse its impact on the developmental quotient(evaluated by the Gesell Developmental Scale)and the rate of developmental delays at 18 months corrected age.Results A total of 41.454%of the infants were extremely preterm.The developmental quotient scores at 18 months corrected age were in the middle of the scale.The language domain had the highest rate of developmental delay(46.182%),followed by the adaptive domain(37.091%).Multiple logistic regression analyses showed that compared with infants in supportive home environments,infants with moderate/unsupportive home environments had significantly elevated risks of development delay:2.162-fold for global(odds ratio(OR)2.162,95% confidence interval(Cl)1.274 to 3.665,p=0.004),2.193-fold for fine motor(OR 2.193,95%CI 1.161 to 4.140,p=0.016),2.249-fold for language(0R 2.249,95%CI 1.336 to 3.786,p=0.002)and 2.042-fold for personal-social(OR 2.042,95%CI 1.149 to 3.628,p=0.015).Conclusions A supportive home environment is a crucial protective factor for the neuropsychological development of preterm infants.It is associated with higher developmental quotient scores and protects against neuropsychiatric delays.Incorporating evaluation and continuous improvement of the home environment into the management framework for preterm infants to promote optimal neurodevelopment is essential.
基金supported by the Research Fund for National Key Research and Development Program of China(2022YFA1503804,2021YFA1501403)the Natural Science Foundation of China(22208094,21922803,92034301,22008066 and 21776077)+2 种基金the China Postdoctoral Science Foundation(BX20190116)the Innovation Program of Shanghai Municipal Education Commission(17ZR1407300)the Program of Shanghai Academic/Technology Research Leader(21XD1421000).
文摘Essentially clearing the structure-activity relationship between iron carbide catalysts involving multiple active centers to understand the reaction mechanism of CO hydrogenation conversion process is still a great challenge.Here,two main micro-environment factors,namely electronic properties and geometrical effects were found to have an integrated effect on the mechanism of CO hydrogenation conversion,involving active sites on multiple crystal phases.The Bader charge of the surface Fe atoms on the active sites had a guiding effect on the CO activation pathway,while the spatial configuration of the active sites greatly affected the energy barriers of CO activation.Although the defective surfaces were more conducive to CO activation,the defective sites were not the only sites to dissociate CO,as CO always tended to dissociate in a wider area.This synergistic effect of the micro-environment also occurred during the CO conversion process.Surface C atoms on relatively flat configurations were more likely to form methane,while the electronic properties of the active sites could effectively describe the C-C coupling process,as well as distinguish the coupling mechanisms.
基金partially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025242)by the Korea government(MIST)(RS-2023-00302751,RS-2024-00343686)the Research Grant of Kwangwoon University in 2024。
文摘Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These systems are equipped with battery-free operation,wireless connectivity,and are designed to be both miniaturized and lightweight.Such features enable the safe,real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.Despite the exploration into diverse application environments,the development of a systematic and comprehensive research framework for system architecture remains elusive,which hampers further optimization of these systems.This review,therefore,begins with an examination of application scenarios,progresses to evaluate current system architectures,and discusses the function of each component—specifically,the passive sensor module,the wireless communication model,and the readout module—within the context of key implementations in target sensing systems.Furthermore,we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios,derived from this systematic approach.By outlining a research trajectory for the application of passive wireless systems in sensing technologies,this paper aims to establish a foundation for more advanced,user-friendly applications.
基金supported by the National Key Research and Development Plan (2017YFC0601400)SDUST Research Fund (2018TDJH101)the National Natural Science Foundation of China (41402086, 272172)
文摘Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic development are not yet clearly known. In this research study, the typical continental fault basins of eastern China were chosen as examples for the purpose of conducting an examination of the coal and oil shale symbiotic assemblage types, genetic environmental differences, and transformation mechanisms, as well as the development and occurrence characteristics o f different assemblage types. Through a large number of investigations, systematic experimental testing, and sequence stratigraphy studies, the following conclusions were obtained:(1) There were five types of coal and oil shale symbiotic assemblages observed in the continental fault basins,(2) The development of coal and oil shale deposits requires a warm and humid climate, stable structure, abundant organic matter supply, a certain water depth, and a lower terrestrial source debris supply. The observed differences were that the water depth conditions were diversified in the study area, as well as the sources, types, and content of the organic matter.(3) The rapid transformations of the coal and oil shale genetic environments were mainly controlled by the tectonic settings and climatic conditions, which were determined to control the changes in the water depths, salinity,redox conditions, and lake productivity of the genetic environments. Also, in the symbiotic assemblages, genetic environment changes had induced the development of oil shale deposits, which gradually evolved into coal genetic environments.(4) In the isochronous sequence stratigraphic framework of the coal and oil shale symbiotic assemblages, the lake expansion system tracts (EST) were determined to be the most beneficial to the growth o f all the types of assemblages and were characterized by more assemblage development phases and smaller bed thicknesses. From the early to the late stages of the EST, and from the lakesides to lake centers, the thicknesses of the coal seams in the symbiotic assemblages showed trends of thinning, while the thicknesses of the oil shale deposits exhibited increasing trends. The early stages of high stand system tracts were found to be beneficial to the development of the symbiotic assemblages of coal seams overlying the oil shale. This tract type generally presented large bed thicknesses and distribution ranges. The low stand system tract and the late high stand system tract were determined to be unconducive to the development of the symbiotic assemblages.
基金the startup fund of the Ohio State University(OSU)OSU Sustainability Institute Seed Grant+2 种基金OSU Institute for Materials Research Kickstart Facility Grantthe National Natural Science Foundation of China(No.31971740)the Science and technology project of Jiangsu Province(BE2018391).
文摘Although advances in wireless technologies such as miniature and wearable electronics have improved the quality of our lives,the ubiquitous use of electronics comes at the expense of increased exposure to electromagnetic(EM)radiation.Up to date,extensive efforts have been made to develop high-performance EM absorbers based on synthetic materials.However,the design of an EM absorber with both exceptional EM dissipation ability and good environmental adaptability remains a substantial challenge.Here,we report the design of a class of carbon heterostructures via hierarchical assembly of graphitized lignocellulose derived from bamboo.Specifically,the assemblies of nanofibers and nanosheets behave as a nanometer-sized antenna,which results in an enhancement of the conductive loss.In addition,we show that the composition of cellulose and lignin in the precursor significantly influences the shape of the assembly and the formation of covalent bonds,which affect the dielectric response-ability and the surface hydrophobicity(the apparent contact angle of water can reach 135°).Finally,we demonstrate that the obtained carbon heterostructure maintains its wideband EM absorption with an effective absorption frequency ranging from 12.5 to 16.7 GHz under conditions that simulate the real-world environment,including exposure to rainwater with slightly acidic/alkaline pH values.Overall,the advances reported in this work provide new design principles for the synthesis of high-performance EM absorbers that can find practical applications in real-world environments.
基金supported by the National Natural Science Foundation of China (No.50674093)the National Scientific and Technological Support Projects (No.2006BAK03B00) and the Pingdingshan Coal Mine Group
文摘The electromagnetic environment of laneways in underground coal mines is an important area for the design of new electronic products,as well as a fundamental space for mine monitoring,surveillance,communications and control systems.An investigation of electromagnetic interference in coal mines is essential for the enhancement of performances of these systems.In this study,a new field method is provided in which radiated emission tests in coal mine laneways have been carried out.We conclude that:1) the wiring motor vehicles can radiate interference with a bandwidth up to 1 GHz and with an amplitude 10 dBμV/m higher than the background noise;2) the PHS(Personal Handy phone System) mobile communication system can cause interference 40 dBμV/m higher than the background noise;3) an interference 25 dBμV/m higher than the background noise can be generated during the communication at a working bandwidth of 48.8 MHz;and 4) power cables,battery vehicles as well as mechanical and electrical dong rooms have little effect on the electromagnetic radiation environment in coal mine tunnels.
基金supported by the National Natural Science Foundation of China(No.92167202,61925102,U21B2014,62101069)the National Key R&D Program of China(No.2020YFB1805002)。
文摘In order to support the future digital society,sixth generation(6G)network faces the challenge to work efficiently and flexibly in a wider range of scenarios.The traditional way of system design is to sequentially get the electromagnetic wave propagation model of typical scenarios firstly and then do the network design by simulation offline,which obviously leads to a 6G network lacking of adaptation to dynamic environments.Recently,with the aid of sensing enhancement,more environment information can be obtained.Based on this,from radio wave propagation perspective,we propose a predictive 6G network with environment sensing enhancement,the electromagnetic wave propagation characteristics prediction enabled network(EWave Net),to further release the potential of 6G.To this end,a prediction plane is created to sense,predict and utilize the physical environment information in EWave Net to realize the electromagnetic wave propagation characteristics prediction timely.A two-level closed feedback workflow is also designed to enhance the sensing and prediction ability for EWave Net.Several promising application cases of EWave Net are analyzed and the open issues to achieve this goal are addressed finally.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)National Natural Science Foundation of China(No.62101069)+2 种基金National Natural Science Foundation of China(No.62031019)National Natural Science Foundation of China(No.92167202)BUPT-CMCC Joint Innovation Center.
文摘Recently,whether the channel prediction can be achieved in diverse communication scenarios by directly utilizing the environment information gained lots of attention due to the environment impacting the propagation characteristics of the wireless channel.This paper presents an environment information-based channel prediction(EICP)method for connecting the environment with the channel assisted by the graph neural networks(GNN).Firstly,the effective scatterers(ESs)producing paths and the primary scatterers(PSs)generating single propagation paths are detected by building the scatterercentered communication environment graphs(SCCEGs),which can simultaneously preserve the structure information and highlight the pending scatterer.The GNN-based classification model is implemented to distinguish ESs and PSs from other scatterers.Secondly,large-scale parameters(LSP)and small-scale parameters(SSP)are predicted by employing the GNNs with multi-target architecture and the graphs of detected ESs and PSs.Simulation results show that the average normalized mean squared error(NMSE)of LSP and SSP predictions are 0.12 and 0.008,which outperforms the methods of linear data learning.
基金the Project of National Natural Science Foundation of China (Grant No. 61471395, No. 61301161, and No. 61501510)partly supported by Natural Science Foundation of Jiangsu Province (Grant No. BK20161125 and No. BK20150717)
文摘As the earliest invented and utilized communication approach, shortwave, known as high frequency(HF) communication now experience the deterioration of HF electromagnetic environment. Finding quality frequency in efficient manner becomes one of the key challenges in HF communication. Spectrum prediction infers the future spectrum status from history spectrum data by exploring the inherent correlations and regularities. The investigation of HF electromagnetic environment data reveals the correlations and predictability of HF frequency band in both time and frequency domain. To solve this problem, we develop a Spectrum Prediction-based Frequency Band Pre-selection(SP-FBP) for HF communications. The pre-selection of HF frequency band mainly incorporated in prediction of HF spectrum occupancy and prediction of HF usable frequency, which provide the frequency band ranking of spectrum occupancy and alternative frequency for spectrum sensing, respectively. Performance evaluation via real-world HF spectrum data shows that SP-FBP significantly improves the efficiency of finding quality frequency in HF communications.
文摘The Mobile Ubiquitous Service Environment (MUSE), established through the coordination and integration of mobile telecommunications and ubiquitous network in the pursuit of Always Best Experience (ABE), represents the major development trend for the next generation mobile wireless network. Research on MUSE will involve the integration of computing model system, service platform system, operating system and terminal structure system, all of which involve exploration and innovation of new networking structure, its control and management as well as way of measuring. The change in network resources triggers the change in network computing models. To make readers have a basic understanding of mobile ubiquitous network environment, this lecture will introduce MUSE in two sections. The first section describes the background of MUSE and its future development prospect. The second section focuses on the design principles and key technologies in MUSE model, which make services realized, as well as the networking structure of MUSE model, and the key technologies and design principles of networking.
基金supported by the National Basic Research Program of China(Grant No.2013CB934001)the National Natural Science Foundation of China(Grant Nos.51072012 and 51272015)
文摘Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+ 06 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and 02 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ ions and H atoms could form a Mn2+-O2--Mn2+ complex and Mn-H-Mn bridge structure. The magnetic measurement of the as-prepared sample shows room temperature paramagnetic behavior due to the Mn3+-O2--Mn3+ complex, while the annealed samples exhibit their ferromagnetism, which originates from the Mn-H-Mn bridge structure and the Mn-Mn exchange interaction in the Mn2+-O2--Mn2+ complex.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31870613)Guizhou Province High-level Innovative Talents Training Plan Project(2016)5661.
文摘Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.
文摘In this paper, the properties of distributed virtual environment (DVE) and the requirements on computer networks is briefly reviewed. A multicast protocol, called sender initiated grouping multicast protocol for DVE (SIGMP), is proposed. This new multicast protocol is based on a novel concept, multicast group (MG), which divides all participants in a DVE system into groups, among which there is a multicast group trustee (MGT) node to manage the group. The protocol provides unreliable/reliable, totally ordered and multiple to multiple multicast transmission service for DVE systems without sacrificing the communication efficiency heavily. At the same time, reliable unicast and one to multiple multicast transmission services are also supported. The performance analysis of the new protocols is also presented. Based on SIGMP, a simple demonstration of DVE system is designed and implemented. This demo system is running on several SGI workstations connected by a FDDI and Ethernet network.
基金funded by the National Natural Science Foundation of China, grant number 11975307the National Defense Science and Technology Innovation Special Zone Project, grant number 19-H863-01-ZT-003-003-12。
文摘The anomaly detection of electromagnetic environment situation(EMES) has essential reference value for electromagnetic equipment behavior cognition and battlefield threat assessment.In this paper,we proposed a deep learning-based method for detecting anomalies in EMES to address the problem of relatively low efficiency of electromagnetic environment situation anomaly detection(EMES-AD).Firstly,the convolutional kernel extracts the static features of different regions of the EMES.Secondly,the dynamic features of the region are obtained by using a recurrent neural network(LSTM).Thirdly,the Spatio-temporal features of the region are recovered by using a de-convolutional network and then fused to predict the EMES.The structural similarity algorithm(SSIM) is used to determine whether it is anomalous.We developed the detection framework,de-signed the network parameters,simulated the data sets containing different anomalous types of EMES,and carried out the detection experiments.The experimental results show that the proposed method is effective.
基金financially supported by the National Natural Science Foundation of China(22209057)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J0839)。
文摘Carbon-based materials are recognized as anodes fulling of promise for potassium ion batteries(PIBs)due to advantages of affordable cost and high conductivity.However,they still face challenges including structural unstability and slow kinetics.It is difficult to achieve efficient potassium storage with unmodified carbonaceous anode.Herein,atomic bismuth(Bi)sites with different atom coordinations anchored on carbon nanosheets(CNSs)have been synthesized through a template method.The properties of prepared multi-doping carbon anodes Bi-N_(3)S_(1)/CNSs,Bi-N_(3)P_(1)/CNSs and Bi-N_(4)/CNSs were probed in PIBs.The configuration Bi-N_(3)S_(1) with stronger charge asymmetry exhibits superior potassium storage performance compared to Bi-N_(3)P_(1) and Bi-N_(4) configurations.The Bi-N_(3)S_(1)/CNSs display a rate capacity of 129.2 mAh g^(-1)even at 10 A g^(-1)and an impressive cyclability characterized by over 5000 cycles at 5 A g^(-1),on account of its optimal coordination environment with more active Bi centers and K^(+)adsorption sites.Notably,assembled potassium-ion full cell Mg-KVO//Bi-N_(3)S_(1)/CNSs also shows an outstanding cycling stability,enduring 3000 cycles at 2 A g^(-1).Therefore,it can be demonstrated that regulating the electronic structure of metallic centre M-N_(4) via changing the type of ligating atom is a feasible strategy for modifying carbon anodes,on the base of co-doping metal and non-metal.