In this paper, we prove strong convergence theorems for approximation of a fixed point of a left Bregman strongly relatively nonexpansive mapping which is also a solution to a finite system of equilibrium problems in ...In this paper, we prove strong convergence theorems for approximation of a fixed point of a left Bregman strongly relatively nonexpansive mapping which is also a solution to a finite system of equilibrium problems in the framework of reflexive real Banach spaces. We also discuss the approximation of a common fixed point of a family of left Bregman strongly nonexpansive mappings which is also solution to a finite system of equilibrium problems in reflexive real Banach spaces. Our results complement many known recent results in the literature.展开更多
In this paper, we introduce two new iterative algorithms for finding a common element of the set of solutions of a general equilibrium problem and the set of solutions of the variational inequality for an inverse-stro...In this paper, we introduce two new iterative algorithms for finding a common element of the set of solutions of a general equilibrium problem and the set of solutions of the variational inequality for an inverse-strongly monotone operator and the set of common fixed points of two infinite families of relatively nonexpansive mappings or the set of common fixed points of an infinite family of relatively quasi-nonexpansive mappings in Banach spaces. Then we study the weak convergence of the two iterative sequences. Our results improve and extend the results announced by many others.展开更多
文摘In this paper, we prove strong convergence theorems for approximation of a fixed point of a left Bregman strongly relatively nonexpansive mapping which is also a solution to a finite system of equilibrium problems in the framework of reflexive real Banach spaces. We also discuss the approximation of a common fixed point of a family of left Bregman strongly nonexpansive mappings which is also solution to a finite system of equilibrium problems in reflexive real Banach spaces. Our results complement many known recent results in the literature.
文摘In this paper, we introduce two new iterative algorithms for finding a common element of the set of solutions of a general equilibrium problem and the set of solutions of the variational inequality for an inverse-strongly monotone operator and the set of common fixed points of two infinite families of relatively nonexpansive mappings or the set of common fixed points of an infinite family of relatively quasi-nonexpansive mappings in Banach spaces. Then we study the weak convergence of the two iterative sequences. Our results improve and extend the results announced by many others.