This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 ...This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.展开更多
A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fibe...A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.展开更多
Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical e...Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T...In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.展开更多
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr...For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.展开更多
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o...Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.展开更多
The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high...The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability.展开更多
Multi-living agent system (MLAS) is a new concept in the field of complex system research, which is peculiarly suitable for the design and analysis of a complex information system in a serious confrontation and tigh...Multi-living agent system (MLAS) is a new concept in the field of complex system research, which is peculiarly suitable for the design and analysis of a complex information system in a serious confrontation and tight constraint environment. However, the universal method to quantitatively measure the living degree of an MLAS remains uncertain, which is critical to the self-organizing process. Therefore, a novel analytic hierarchy process (AHP) based method with dependent pairwise comparison matrix (PCM) for the evaluation of living degree of the MLAS is proposed, which eliminates the shortcoming of fixed PCM in traditional process. Furthermore, to avoid the annoying procedure of the consistency validation, the PCMs are appropriately reconstructed. Through an illustration of the netted radar system, the calculation detail is explicitly presented. Altogether, the advanced evaluation method successfully accomplishes the preset objective and promotes the development of the MLAS theory and AHP as well.展开更多
With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even elimina...With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.展开更多
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer...The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a...In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.展开更多
A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutua...A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.展开更多
文摘This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.
基金Supported by the Central Government Guidance on Local Science and Technology Development Funds(2023ZY1023)the Six Talent Peaks Project in Jiangsu Province(KTHY-052).
文摘A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.
文摘Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金supported by the National Natural Science Foundation of China(61803015).
文摘In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.
文摘For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
文摘Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.
基金supported by the National Natural Science Foundation of China (Grant No. 12302056)the Postdoctoral Fellowship Program of CPSF:GZC20233445。
文摘The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability.
基金supported by the National Natural Science Foundation of China(61172176)
文摘Multi-living agent system (MLAS) is a new concept in the field of complex system research, which is peculiarly suitable for the design and analysis of a complex information system in a serious confrontation and tight constraint environment. However, the universal method to quantitatively measure the living degree of an MLAS remains uncertain, which is critical to the self-organizing process. Therefore, a novel analytic hierarchy process (AHP) based method with dependent pairwise comparison matrix (PCM) for the evaluation of living degree of the MLAS is proposed, which eliminates the shortcoming of fixed PCM in traditional process. Furthermore, to avoid the annoying procedure of the consistency validation, the PCMs are appropriately reconstructed. Through an illustration of the netted radar system, the calculation detail is explicitly presented. Altogether, the advanced evaluation method successfully accomplishes the preset objective and promotes the development of the MLAS theory and AHP as well.
文摘With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
文摘The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.
文摘A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.