大量工程应用问题可建模为结构化非线性规划,且这类问题的系数矩阵可分为稀疏型和稠密型两种类型.利用原始-对偶内点法(primal dual interior point method,PD-IPM),并结合分布式并行技术可高效求解此类问题.经典工程问题-机组组合(unit...大量工程应用问题可建模为结构化非线性规划,且这类问题的系数矩阵可分为稀疏型和稠密型两种类型.利用原始-对偶内点法(primal dual interior point method,PD-IPM),并结合分布式并行技术可高效求解此类问题.经典工程问题-机组组合(unit commitment,UC)为稀疏系数矩阵的结构化非线性规划,本文根据PD-IPM原理,对UC模型进行连续松弛预处理,结合快速解耦技术解耦牛顿修正方程并设计CPU-GPU协同并行算法求解子问题,最后将结果与带稠密型子问题的结构化非线性规划的求解结果进行比较和分析.实验结果显示,本文所设计的算法对于两种不同类型的结构化非线性规划求解均能获得较好的加速比.展开更多
为解决目前已有的图像匹配算法不适用于对实时性要求很强的应用,提出了PLS(Partial Least Squares)与余弦定理相结合的并行化图像匹配算法。该算法在CUDA架构下,对图像矩阵分块,分块后每个小块图像存入共享存储器处理并提取每个小块图...为解决目前已有的图像匹配算法不适用于对实时性要求很强的应用,提出了PLS(Partial Least Squares)与余弦定理相结合的并行化图像匹配算法。该算法在CUDA架构下,对图像矩阵分块,分块后每个小块图像存入共享存储器处理并提取每个小块图像特征,通过合并后图像特征采用余弦定理计算图像的相似度,从而找出匹配图像。实验表明,CUDA架构下可以实现图像的并行匹配,与CPU上串行匹配相比,时效性提高了百倍以上。展开更多
文摘为解决目前已有的图像匹配算法不适用于对实时性要求很强的应用,提出了PLS(Partial Least Squares)与余弦定理相结合的并行化图像匹配算法。该算法在CUDA架构下,对图像矩阵分块,分块后每个小块图像存入共享存储器处理并提取每个小块图像特征,通过合并后图像特征采用余弦定理计算图像的相似度,从而找出匹配图像。实验表明,CUDA架构下可以实现图像的并行匹配,与CPU上串行匹配相比,时效性提高了百倍以上。