ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The m...ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.展开更多
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh...Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performan...The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performance.However,there is still disagreement regarding the sodium storage mechanism in the low-voltage plateau region of HC anodes,and the structure-performance relationship between its complex multiscale micro/nanostructure and electrochemical behavior remains unclear.This paper summarizes current research progress and the major problems in understanding HC’s microstructure and sodium storage mechanism,and the relationship between them.Findings about a universal sodium storage mechanism in HC,including predictions about micropore-capacity relationships,and the opportunities and challenges for using HC anodes in commercial SIBs are presented.展开更多
Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy wi...Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability.展开更多
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv...Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.展开更多
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr...The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.展开更多
This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectil...This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.展开更多
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ...Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.展开更多
A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment ...A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.展开更多
This article generally studies American workers’ economic conditions in the late nineteenth century. Through the examination of their poor living conditions, the author aims to expose the dark side of America in the ...This article generally studies American workers’ economic conditions in the late nineteenth century. Through the examination of their poor living conditions, the author aims to expose the dark side of America in the period of Industrialization.展开更多
Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terz...Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.展开更多
In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,...In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,the rheological tests were carried out.These experiment results showed that the stress conditions,especially the stress level were the critical influencing factors of the rheological deformation properties.Under the low stress level(S=0.1),the granular soil showed the elastic properties,and there was no obvious rheological deformation.Under the middle stress level(0.2<S≤0.6),creep curves showed the linear viscoelastic rheological properties.However,under the high stress level(S>0.8) creep curves showed the non-linear viscous plastic rheological properties.Especially,under the stress level of S=1.0,the accelerated rheological phase of creep curves occurred at early time with a trend of failure.The stress level had obvious effects on the final rheological deformation of the soil sample,and the final rheological deformation increments nonlinearly increased with stress level.The final rheological deformation increment and step was little under low stress level,while it became large under high stress level,which showed the nonlinearly rheological properties of the granular soil.The confining pressure also had direct effects on final rheological deformation,and the final rheological deformation linearly increased with confining pressure increments.展开更多
Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting perfo...Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.展开更多
Infrared false target is an important mean to induce the infrared-guided weapons,and the key issue is how to keep the surface temperature of the infrared false target to be the same as that of the object to be protect...Infrared false target is an important mean to induce the infrared-guided weapons,and the key issue is how to keep the surface temperature of the infrared false target to be the same as that of the object to be protected.One-dimensional heat transfer models of a metal plate and imitative material were established to explore the influences of the thermophysical properties of imitative material on the surface temperature difference(STD) between the metal plate and imitative material which were subjected to periodical ambient conditions.It is elucidated that the STD is determined by the imitative material’s dimensionless thickness(dim*,) and the thermal inertia(Pim).When dim* is above 1.0,the STD is invariable as long as Pim is a constant.And if the dimensionless thickness of metal plate(d,m*) is also larger than 1.0,the STD approaches to zero as long as Pimis the same as the thermal inertia of metal plate(Pm).When dim* is between 0.08 and 1,the STD varies irregularly with Pim and dim*.However,if dm* is also in the range of 0.08-1,the STD approaches to zero on condition that Pim=Pm and dim*= dm*.If dim*,is below 0.08,the STD is unchanged when Pimdim* is a constant.And if dm* is also less than 0.08,the STD approaches to zero as long as Pimdim* = Pmdm*.Furthermore,an applicationoriented discussion indicates that the imitative material can be both light and thin via the application of the phase change material with a preset STD because of its high specific heat capacity during the phase transition process.展开更多
Platycodon grandiflorum A.DC.(PAl)C)root was taken as experiment material to extract polysaccharide.On the base of single factor tests(extraction time,extraction temperature,liquid-solid ratio,solvent pH value and NaC...Platycodon grandiflorum A.DC.(PAl)C)root was taken as experiment material to extract polysaccharide.On the base of single factor tests(extraction time,extraction temperature,liquid-solid ratio,solvent pH value and NaCl concentration),the study concluded the main factors affecting the extraction of PADC polysaccharide,which are liquid-solid ratio,extraction time and extraction temperature.Then through central-composite test design,the extraction conditions were concluded as liquid-solid ratio 34.43,extraction time 89.83 min and extraction temperature 52.47℃.By means of validation experiments,the adequacy of this model was confirmed.展开更多
Distinction of predator's diet and prey choice preference is a hot topic of current investigations. Spider being generalist predator and cosmopoliter in nature acts as biological control agent in many agro-ecosystems...Distinction of predator's diet and prey choice preference is a hot topic of current investigations. Spider being generalist predator and cosmopoliter in nature acts as biological control agent in many agro-ecosystems. In the current study, predatory efficacy of five spiders (Pardosa birmanica, Cyclosa insulana, Thomisus projectus, Plexippus paykulli and Lycosa terrestris) inhabiting the cotton fieldevaluated in the laboratory conditions maintained at (27+2)℃ temperature, 65%-5% relative humidity and 12 : 12 h of light and dark photoperiod. Four key cotton pests' viz. Bemisiatabaci, Amrascaderastans Thripstabaci and Helicoverpa armigera were utilized in the choice and no-choice predatory studies. The findings of current investigation revealed that each predatory spider utilized at least one pest species. Predation rate was found higher in the no-choice predation because of unavailability of substitutes feeding source. The investigation also indicated each predatory spider killed more pests than consumed. The findings of this study support the predatory role of spiders in controlling the cotton major pests.展开更多
Presence of different terms with various values can alter the thermal behavior of the nanofluids flow over porous surfaces.The aim of this research is to study the influence of nanoparticles volume fraction,nanopartic...Presence of different terms with various values can alter the thermal behavior of the nanofluids flow over porous surfaces.The aim of this research is to study the influence of nanoparticles volume fraction,nanoparticles type,suction or injection,the heat generation or absorption,the Eckert number,thermal and velocity slip parameters,and radiation on the velocity and temperature fields on the flow and heat transfer over a porous flat plate.Four different types of nanoparticles including metal nanoparticles (Cu),metal oxide nanoparticles (Al2O3) and carbon-based nanomaterials (MWCNTs and SWCNTs) which were dispersed in the water (as based fluid) are studied.The governing equations are converted into the ordinary differential equations using similarity solution and solved numerically by the RKF45 algorithm.The results of the simulations showed a contradiction with the results of other researchers who expressed that using nanoparticles with higher thermal conductivity and volume fraction led to increasing heat transfer rate in nanofluids;this study proves that,in some cases,boosting the volume fraction of nanoparticles has a potential to decrease the heat transfer rate due to significant changes in values of some parameters including radiation,heat generation,and viscous dissipation.展开更多
This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic...This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic disturbance. Only the matched conditions and the possible bound of the uncertainties are demanded. Based on the stochastic Lyapunov stability theory, an explicit controller is constructed in the gradient direction, which renders responses of the closed-loop systems be globally bounded in probability. When the systems degrade to linear systems, the controller becomes linear. Illustrative examples are given to show the effectiveness of the proposed method.展开更多
Employing the orthogonal design,the optimal extraction conditions for flavonoid in leaves of black currant were determined by colorimetric estimation,which were extraction agent of 75% EtOH-H 2O,the material ratio(ra...Employing the orthogonal design,the optimal extraction conditions for flavonoid in leaves of black currant were determined by colorimetric estimation,which were extraction agent of 75% EtOH-H 2O,the material ratio(ratio of weight of fresh leaves to volume of the solvent)of 1:16,the temperature of 35℃,the time of 1 h and times of three.A total extraction rate of over 97% and the flavonoid contents of 179 33 mg/100 g were obtained under the optimal extraction conditions.展开更多
文摘ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.
基金National Science Foundation of Zhejiang under Contract(LY23E010001)。
文摘Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
文摘The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performance.However,there is still disagreement regarding the sodium storage mechanism in the low-voltage plateau region of HC anodes,and the structure-performance relationship between its complex multiscale micro/nanostructure and electrochemical behavior remains unclear.This paper summarizes current research progress and the major problems in understanding HC’s microstructure and sodium storage mechanism,and the relationship between them.Findings about a universal sodium storage mechanism in HC,including predictions about micropore-capacity relationships,and the opportunities and challenges for using HC anodes in commercial SIBs are presented.
基金National Key Research and Development Program of China(2022YFE0206300)National Natural Science Foundation of China(U21A2081,22075074,22209047)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2024A1515011620)Hunan Provincial Natural Science Foundation of China(2024JJ5068)Foundation of Yuelushan Center for Industrial Innovation(2023YCII0119)。
文摘Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability.
文摘Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.
基金Projects(51979268,52279117,52309146)supported by the National Natural Science Foundation of ChinaProject(SKLGME-JBGS2401)supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.
基金supported by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia,through the Contract no.451-03-65/2024-03/200105
文摘This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2022D01B 187)。
文摘Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.
基金supported by the National Social Science Fund of China(Grand No.21XTJ001).
文摘A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.
文摘This article generally studies American workers’ economic conditions in the late nineteenth century. Through the examination of their poor living conditions, the author aims to expose the dark side of America in the period of Industrialization.
基金Foundation item: Project(50608038) supported by the National Natural Science Foundation of China
文摘Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.
基金Project(200413) supported by Communication Science and Technology Fund of Hunan Province,China
文摘In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,the rheological tests were carried out.These experiment results showed that the stress conditions,especially the stress level were the critical influencing factors of the rheological deformation properties.Under the low stress level(S=0.1),the granular soil showed the elastic properties,and there was no obvious rheological deformation.Under the middle stress level(0.2<S≤0.6),creep curves showed the linear viscoelastic rheological properties.However,under the high stress level(S>0.8) creep curves showed the non-linear viscous plastic rheological properties.Especially,under the stress level of S=1.0,the accelerated rheological phase of creep curves occurred at early time with a trend of failure.The stress level had obvious effects on the final rheological deformation of the soil sample,and the final rheological deformation increments nonlinearly increased with stress level.The final rheological deformation increment and step was little under low stress level,while it became large under high stress level,which showed the nonlinearly rheological properties of the granular soil.The confining pressure also had direct effects on final rheological deformation,and the final rheological deformation linearly increased with confining pressure increments.
基金Project(U1865203)supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of ChinaProject(51279201)supported by the National Natural Science Foundation of ChinaProjects(2019YFC0605103,2019YFC0605100)supported by the National Key R&D Program of China。
文摘Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.
基金funded by the National Natural Science Foundation of China (No. 51576188)
文摘Infrared false target is an important mean to induce the infrared-guided weapons,and the key issue is how to keep the surface temperature of the infrared false target to be the same as that of the object to be protected.One-dimensional heat transfer models of a metal plate and imitative material were established to explore the influences of the thermophysical properties of imitative material on the surface temperature difference(STD) between the metal plate and imitative material which were subjected to periodical ambient conditions.It is elucidated that the STD is determined by the imitative material’s dimensionless thickness(dim*,) and the thermal inertia(Pim).When dim* is above 1.0,the STD is invariable as long as Pim is a constant.And if the dimensionless thickness of metal plate(d,m*) is also larger than 1.0,the STD approaches to zero as long as Pimis the same as the thermal inertia of metal plate(Pm).When dim* is between 0.08 and 1,the STD varies irregularly with Pim and dim*.However,if dm* is also in the range of 0.08-1,the STD approaches to zero on condition that Pim=Pm and dim*= dm*.If dim*,is below 0.08,the STD is unchanged when Pimdim* is a constant.And if dm* is also less than 0.08,the STD approaches to zero as long as Pimdim* = Pmdm*.Furthermore,an applicationoriented discussion indicates that the imitative material can be both light and thin via the application of the phase change material with a preset STD because of its high specific heat capacity during the phase transition process.
文摘Platycodon grandiflorum A.DC.(PAl)C)root was taken as experiment material to extract polysaccharide.On the base of single factor tests(extraction time,extraction temperature,liquid-solid ratio,solvent pH value and NaCl concentration),the study concluded the main factors affecting the extraction of PADC polysaccharide,which are liquid-solid ratio,extraction time and extraction temperature.Then through central-composite test design,the extraction conditions were concluded as liquid-solid ratio 34.43,extraction time 89.83 min and extraction temperature 52.47℃.By means of validation experiments,the adequacy of this model was confirmed.
文摘Distinction of predator's diet and prey choice preference is a hot topic of current investigations. Spider being generalist predator and cosmopoliter in nature acts as biological control agent in many agro-ecosystems. In the current study, predatory efficacy of five spiders (Pardosa birmanica, Cyclosa insulana, Thomisus projectus, Plexippus paykulli and Lycosa terrestris) inhabiting the cotton fieldevaluated in the laboratory conditions maintained at (27+2)℃ temperature, 65%-5% relative humidity and 12 : 12 h of light and dark photoperiod. Four key cotton pests' viz. Bemisiatabaci, Amrascaderastans Thripstabaci and Helicoverpa armigera were utilized in the choice and no-choice predatory studies. The findings of current investigation revealed that each predatory spider utilized at least one pest species. Predation rate was found higher in the no-choice predation because of unavailability of substitutes feeding source. The investigation also indicated each predatory spider killed more pests than consumed. The findings of this study support the predatory role of spiders in controlling the cotton major pests.
文摘Presence of different terms with various values can alter the thermal behavior of the nanofluids flow over porous surfaces.The aim of this research is to study the influence of nanoparticles volume fraction,nanoparticles type,suction or injection,the heat generation or absorption,the Eckert number,thermal and velocity slip parameters,and radiation on the velocity and temperature fields on the flow and heat transfer over a porous flat plate.Four different types of nanoparticles including metal nanoparticles (Cu),metal oxide nanoparticles (Al2O3) and carbon-based nanomaterials (MWCNTs and SWCNTs) which were dispersed in the water (as based fluid) are studied.The governing equations are converted into the ordinary differential equations using similarity solution and solved numerically by the RKF45 algorithm.The results of the simulations showed a contradiction with the results of other researchers who expressed that using nanoparticles with higher thermal conductivity and volume fraction led to increasing heat transfer rate in nanofluids;this study proves that,in some cases,boosting the volume fraction of nanoparticles has a potential to decrease the heat transfer rate due to significant changes in values of some parameters including radiation,heat generation,and viscous dissipation.
基金supported by the National Natural Science Foundation of China(61304020)
文摘This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic disturbance. Only the matched conditions and the possible bound of the uncertainties are demanded. Based on the stochastic Lyapunov stability theory, an explicit controller is constructed in the gradient direction, which renders responses of the closed-loop systems be globally bounded in probability. When the systems degrade to linear systems, the controller becomes linear. Illustrative examples are given to show the effectiveness of the proposed method.
文摘Employing the orthogonal design,the optimal extraction conditions for flavonoid in leaves of black currant were determined by colorimetric estimation,which were extraction agent of 75% EtOH-H 2O,the material ratio(ratio of weight of fresh leaves to volume of the solvent)of 1:16,the temperature of 35℃,the time of 1 h and times of three.A total extraction rate of over 97% and the flavonoid contents of 179 33 mg/100 g were obtained under the optimal extraction conditions.