期刊文献+
共找到2,034篇文章
< 1 2 102 >
每页显示 20 50 100
A dual adaptive unscented Kalman filter algorithm for SINS-based integrated navigation system 被引量:1
1
作者 LYU Xu MENG Ziyang +4 位作者 LI Chunyu CAI Zhenyu HUANG Yi LI Xiaoyong YU Xingkai 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期732-740,共9页
In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ... In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified. 展开更多
关键词 Kalman filter dual-adaptive integrated navigation unscented Kalman filter(UKF) ROBUST
在线阅读 下载PDF
SINS/CNS/GPS integrated navigation algorithm based on UKF 被引量:27
2
作者 Haidong Hu Xianlin Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期102-109,共8页
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl... A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm. 展开更多
关键词 navigation system integrated navigation unscented Kalman filter federated Kalman filter strapdown inertial navigation system celestial navigation system global psitioning system.
在线阅读 下载PDF
IAE-adaptive Kalman filter for INS/GPS integrated navigation system 被引量:14
3
作者 Bian Hongwei Jin Zhihua Tian Weifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期502-508,共7页
A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kal... A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter. 展开更多
关键词 inertial navigation system global positioning system integrated navigation system adaptive Kalman filter
在线阅读 下载PDF
A tightly coupled rotational SINS/CNS integrated navigation method for aircraft 被引量:7
4
作者 NING Xiaolin YUAN Weiping LIU Yanhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第4期770-782,共13页
Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated... Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method. 展开更多
关键词 celestial navigation system(CNS) rotation modulation technology ROTATIONAL STRAPDOWN INERTIAL navigation system(SINS) ROTATIONAL SINS/CNS integrated navigation
在线阅读 下载PDF
An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network 被引量:14
5
作者 Hai-fa Dai Hong-wei Bian +1 位作者 Rong-ying Wang Heng Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期334-340,共7页
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem... In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively. 展开更多
关键词 INERTIAL navigation system(INS) Global navigation satellite system(GNSS) integrated navigation RECURRENT neural network(RNN)
在线阅读 下载PDF
Practical integrated navigation fault detection algorithm based on sequential hypothesis testing 被引量:8
6
作者 Feng Yang Cheng Cheng Quan Pan Gongyuan Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期146-149,共4页
In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential... In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems. 展开更多
关键词 residual Chi-square test integrated navigation fault detection.
在线阅读 下载PDF
Intelligent fault-tolerant algorithm with two-stage and feedback for integrated navigation federated filtering 被引量:6
7
作者 Li Cong Honglei Qin Zhanzhong Tan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期274-282,共9页
In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault toleran... In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault. 展开更多
关键词 integrated navigation federated filter fuzzy assess-ment fault-tolerant fusion information sharing.
在线阅读 下载PDF
Robust adaptive UKF based on SVR for inertial based integrated navigation 被引量:8
8
作者 Meng-de Zhang Hai-fa Dai +1 位作者 Bai-qing Hu Qi Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期846-855,共10页
Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper pr... Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers. 展开更多
关键词 integrated navigation Support vector regression Unscented Kalman filter Robust filter Adaptive filter
在线阅读 下载PDF
Gaussian process regression-based quaternion unscented Kalman robust filter for integrated SINS/GNSS 被引量:6
9
作者 LYU Xu HU Baiqing +3 位作者 DAI Yongbin SUN Mingfang LIU Yi GAO Duanyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1079-1088,共10页
High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important... High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method. 展开更多
关键词 integrated navigation Gaussian process regression(GPR) QUATERNION Kalman filter ROBUSTNESS
在线阅读 下载PDF
Fuzzy adaptive Kalman filter for indoor mobile target positioning with INS/WSN integrated method 被引量:10
10
作者 杨海 李威 罗成名 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1324-1333,共10页
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil... Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods. 展开更多
关键词 inertial navigation system(INS) wireless sensor network(WSN) mobile target integrated positioning fuzzy adaptive Kalman filter
在线阅读 下载PDF
Hybrid Kalman and unscented Kalman filters for INS/GPS integrated system considering constant lever arm effect 被引量:1
11
作者 常国宾 柳明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期575-583,共9页
In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm eff... In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated. 展开更多
关键词 inertial navigation system global positioning system(GPS) integrated system lever arm effect Kalman filter unscented Kalman filter
在线阅读 下载PDF
UWB/INS紧组合变分贝叶斯自适应滤波算法 被引量:1
12
作者 徐天河 王森 代培培 《导航定位学报》 北大核心 2025年第2期1-8,共8页
针对超宽带(UWB)与惯性导航系统(INS)紧组合在实际环境中面临非线性误差和噪声干扰的问题,提出一种变分贝叶斯自适应卡尔曼滤波(VBAKF)的UWB/INS紧组合导航算法:通过引入变分贝叶斯方法,自适应调整系统噪声统计特性未知情况下的滤波精度... 针对超宽带(UWB)与惯性导航系统(INS)紧组合在实际环境中面临非线性误差和噪声干扰的问题,提出一种变分贝叶斯自适应卡尔曼滤波(VBAKF)的UWB/INS紧组合导航算法:通过引入变分贝叶斯方法,自适应调整系统噪声统计特性未知情况下的滤波精度,提升滤波性能,并引入高程约束模型,增强高程方向的定位精度;建立UWB/INS紧组合模型,给出VBAKF滤波算法,对比分析VBAKF与传统自适应卡尔曼滤波(AKF)的状态估计性能差异。实验结果显示,VBAKF方法在东、北、天方向的定位精度相比于传统方法可分别提高16.13%、21.43%和6.25%,表明VBAKF方法能显著提高系统状态估计的准确性和可靠性,有效提高UWB/INS组合导航系统在实测环境下的适应能力。 展开更多
关键词 变分贝叶斯 超宽带(UWB) 惯性导航系统(INS) 紧组合 组合导航
在线阅读 下载PDF
一种面向智能移动终端的iPDR/GNSS组合导航方法 被引量:1
13
作者 王振杰 胡超 +1 位作者 聂志喜 张远帆 《中国惯性技术学报》 北大核心 2025年第1期55-63,69,共10页
针对现有行人航位推算(PDR)方法存在误差积累并且定位与航向精度较低,从而导致PDR/全球导航卫星系统(GNSS)组合导航精度下降的问题,提出了一种面向智能移动终端的改进的PDR(iPDR)/GNSS组合导航方法。首先,设计了一种iPDR定位方法,将GNS... 针对现有行人航位推算(PDR)方法存在误差积累并且定位与航向精度较低,从而导致PDR/全球导航卫星系统(GNSS)组合导航精度下降的问题,提出了一种面向智能移动终端的改进的PDR(iPDR)/GNSS组合导航方法。首先,设计了一种iPDR定位方法,将GNSS载波相位历元差分技术计算的航向角引入PDR航向估计中,减小由陀螺漂移引起的航向累积误差。其次,基于因子图优化将GNSS绝对位置与iPDR定位结果相融合。最后,利用智能手机采集的实测数据对所提方法进行验证。实验结果表明:与传统PDR方法相比,iPDR方法的定位精度提高了62.0%,航向精度提高了33.7%;与基于卡尔曼滤波的iPDR/GNSS组合方法相比,基于因子图优化的iPDR/GNSS方法在定位精度上提高了39.8%,有效提高了组合导航系统的精度。 展开更多
关键词 改进行人航位推算 组合导航 智能移动终端 载波相位差分 因子图优化
在线阅读 下载PDF
基于改进差分进化算法的GNSS无源多基地雷达海上目标定位方法 被引量:1
14
作者 何振宇 毛亿 +1 位作者 杨扬 陈武 《通信学报》 北大核心 2025年第2期44-58,共15页
利用全球导航卫星系统无源雷达多卫星的特点,提出一种基于改进差分进化算法的GNSS无源多基地雷达海上目标定位方法。首先,在多个双基地几何配置下,采用长时间积累技术在距离-多普勒域聚焦目标能量;然后,将聚焦的目标能量投影到笛卡儿平... 利用全球导航卫星系统无源雷达多卫星的特点,提出一种基于改进差分进化算法的GNSS无源多基地雷达海上目标定位方法。首先,在多个双基地几何配置下,采用长时间积累技术在距离-多普勒域聚焦目标能量;然后,将聚焦的目标能量投影到笛卡儿平面进行联合检测和定位。为提高投影处理效率,提出一种改进差分进化算法,该算法采用优劣势双种群协同进化策略,能够兼顾算法的收敛性和种群多样性。仿真和现场实验结果表明,所提方法在定位和速度估计精度方面与现有算法相当,但计算耗时显著减少。 展开更多
关键词 全球导航卫星系统 无源雷达 长时间积累 投影处理 差分进化算法
在线阅读 下载PDF
基于高斯勒让德-二分迭代的实际导航性能评估方法
15
作者 钟伦珑 袁旭 +1 位作者 董巧丽 王崇赓 《中国惯性技术学报》 北大核心 2025年第2期196-204,212,共10页
针对传统实际导航性能(ANP)迭代评估方法准确性和快速性难以均衡的问题,提出了一种基于高斯勒让德-二分迭代的ANP评估方法。首先,建立了ANP评估的数学模型,基于多传感器融合滤波理论,在位置估计协方差矩阵的特征值基础上,建立位置估计... 针对传统实际导航性能(ANP)迭代评估方法准确性和快速性难以均衡的问题,提出了一种基于高斯勒让德-二分迭代的ANP评估方法。首先,建立了ANP评估的数学模型,基于多传感器融合滤波理论,在位置估计协方差矩阵的特征值基础上,建立位置估计误差的二维概率密度函数,将组合导航的ANP评估建模成置信域表征参数求解问题。然后,应用高斯勒让德数值积分法减小每次迭代的运算量,同时结合二分迭代快速收缩搜索区间,减小方法迭代次数,避免动态积分区间带来的求积节点数选取困难问题,在保障准确性的同时提高快速性。仿真结果表明,与基于复化Simpson公式的传统方法相比,所提方法可在相同准确性要求下,将平均计算时间由15.69 ms减少到1.09 ms。 展开更多
关键词 多传感器融合 组合导航 实际导航性能 高斯勒让德 二分迭代
在线阅读 下载PDF
基于模糊自适应滤波的MIMU/GNSS组合导航算法
16
作者 严恭敏 吕佩儒 杨小康 《中国惯性技术学报》 北大核心 2025年第6期538-545,共8页
量测噪声的剧烈变化易导致组合导航精度下降甚至发散。针对车载微机电惯性测量单元/全球卫星导航系统(MIMU/GNSS)组合导航场景中量测噪声变化时Sage-Husa自适应滤波收敛慢的问题,提出一种基于高斯隶属函数模糊自适应的组合导航算法。采... 量测噪声的剧烈变化易导致组合导航精度下降甚至发散。针对车载微机电惯性测量单元/全球卫星导航系统(MIMU/GNSS)组合导航场景中量测噪声变化时Sage-Husa自适应滤波收敛慢的问题,提出一种基于高斯隶属函数模糊自适应的组合导航算法。采用高斯隶属函数模糊推理系统,实时修正难以精确建模的量测噪声,提高滤波器对量测噪声变化的跟踪性能,从而提升导航精度。仿真与车载实验表明:所提算法解决了量测噪声变化时Sage-Husa自适应滤波算法收敛慢的问题,其跟踪收敛时间分别缩短了57.7%和41.1%,遮挡路段定位精度分别提高了11.3%和46.2%,遮挡结束后精度分别提高了23.9%和73.2%。 展开更多
关键词 MIMU/GNSS组合导航 Gauss隶属函数 模糊自适应 车载导航系统
在线阅读 下载PDF
中国空间站GNC系统一体化设计与验证
17
作者 冯帅 蔡彪 +7 位作者 张录晨 张志方 尚葳蕤 徐建 宋晓光 张军 党纪红 张锦江 《宇航学报》 北大核心 2025年第4期765-774,共10页
中国空间站GNC系统按照“一体化设计、统筹研制”的途径开展设计,以实现整体最优。在设计过程中,产生了3个主要问题:三舱GNC系统深度融合问题、高容错控制器设计问题、变结构GNC系统测试问题。本文对这3个问题进行了研究:描述了3个问题... 中国空间站GNC系统按照“一体化设计、统筹研制”的途径开展设计,以实现整体最优。在设计过程中,产生了3个主要问题:三舱GNC系统深度融合问题、高容错控制器设计问题、变结构GNC系统测试问题。本文对这3个问题进行了研究:描述了3个问题的由来,给出了问题的解决方法,用地面测试及在轨飞行数据验证了方法的实际效果。结果表明:配有总线中继器、总线开关的4条穿舱1553B总线能够在各种组合体构型下将三舱GNC系统深度融合;基于拜占庭容错的四模冗余计算机实现了“两重故障下连续运行”的目标;基于FlexRay时间触发总线的测试系统保证了各舱动力学同步运行、设备同步激励,实现了变结构GNC系统的高覆盖性测试。 展开更多
关键词 中国空间站 制导、导航与控制 一体化设计 信息系统 1553B总线 冗余计算机
在线阅读 下载PDF
基于改进样本卷积交互网络的车辆组合导航系统研究
18
作者 匡兴红 严碧云 《汽车安全与节能学报》 北大核心 2025年第2期315-325,共11页
车载全球卫星定位系统/惯性导航系统(GNSS/INS组合导航)的GNSS信号在信号遮蔽环境中容易失锁,导致定位结果发散,影响无人车行驶的效率和安全。针对这一问题,该研究提出一种基于改进样本卷积交互网络(SCINet)的人工智能解决方案。所提出... 车载全球卫星定位系统/惯性导航系统(GNSS/INS组合导航)的GNSS信号在信号遮蔽环境中容易失锁,导致定位结果发散,影响无人车行驶的效率和安全。针对这一问题,该研究提出一种基于改进样本卷积交互网络(SCINet)的人工智能解决方案。所提出的模型在低层数的SCINet基础上增加了主成分分析、趋势分解、线性卷积交互学习等策略,提高了模型在该工况下的工作稳定性和准确性。结果表明:所提出的模型与长短记忆网络(LSTM)和SCINet相比定位误差缩小了80.9%和67.6%,有效提高了GNSS失锁状态下无人车的室外定位精度,保证了无人车辆定位的可靠性和安全性。 展开更多
关键词 无人车 组合导航 惯性导航系统(INS)失锁 样本卷积交互网络(SCINet) 趋势分解
在线阅读 下载PDF
基于自适应MCMC的鲁棒因子图优化组合导航算法
19
作者 陈熙源 崔天昊 钟雨露 《仪器仪表学报》 北大核心 2025年第2期81-91,共11页
在城市峡谷环境中,GNSS多径效应与非视距现象严重,会极大影响GNSS的定位精度,进而影响INS/GNSS组合导航系统的定位效果。然而传统的INS/GNSS组合导航系统无法确定在城市峡谷环境中快速变化的GNSS量测噪声,为保证组合导航系统的抗差性能... 在城市峡谷环境中,GNSS多径效应与非视距现象严重,会极大影响GNSS的定位精度,进而影响INS/GNSS组合导航系统的定位效果。然而传统的INS/GNSS组合导航系统无法确定在城市峡谷环境中快速变化的GNSS量测噪声,为保证组合导航系统的抗差性能和估计精度,针对传统因子图优化算法中量测噪声协方差矩阵不准确带来状态估计精度下降的问题,提出了一种基于自适应MCMC的鲁棒因子图优化组合导航算法。首先,基于先验和后验两阶段将自适应MCMC引入因子图优化框架,在先验中通过MCMC算法将对后验概率采样转化为对先验概率和似然概率的乘积进行采样,并引入自适应策略提高采样效率,得到后验概率对应的样本集。在后验中,通过KL散度最小化近似后验和真实后验,从而精确估计GNSS时变量测噪声协方差;其次,引入新息χ^(2)检测算法,通过构建假设检验统计量和量测异常边界值来检测和剔除粗差。所提方法在减小粗差干扰的同时能有效估计GNSS时变量测噪声。由INS/GNSS组合导航的仿真和现场实验表明,所提方法相比普通因子图优化算法和基于变分贝叶斯的鲁棒自适应因子图优化算法在水平定位均方根误差上分别减小了20.4%、11.9%和71.6%、25.2%,具有较好的鲁棒性。 展开更多
关键词 组合导航 因子图优化 自适应MCMC 新息χ^(2)检测算法
在线阅读 下载PDF
5G-A/6G+北斗通感导技术在低空经济中的应用与展望 被引量:1
20
作者 金耀 张贺 +4 位作者 邓中亮 唐雄燕 王泽林 胡雅静 马重阳 《电信科学》 北大核心 2025年第3期1-16,共16页
低空经济作为国家战略性新兴产业,将迎来重大发展机遇。然而,低空活动所需的通信、感知和导航等基础设施还不够完善。聚焦低空智联网中的5G-A/6G通感一体和北斗通导一体化技术,分析了二者的关键技术、融合思路及在低空经济中的应用和未... 低空经济作为国家战略性新兴产业,将迎来重大发展机遇。然而,低空活动所需的通信、感知和导航等基础设施还不够完善。聚焦低空智联网中的5G-A/6G通感一体和北斗通导一体化技术,分析了二者的关键技术、融合思路及在低空经济中的应用和未来研究方向。首先,介绍了5G-A/6G通感一体技术和北斗通导一体化技术,并探讨了基于通信基站的通信、感知和导航3种技术的一体化融合思路。其次,研究了通信、感知、导航定位及授时技术在低空经济中的应用场景。最后,展望了面向低空经济应用的通信、感知及导航技术未来研究方向。 展开更多
关键词 低空经济 北斗 通感一体 通导一体化 通感导一体化 低空智联网
在线阅读 下载PDF
上一页 1 2 102 下一页 到第
使用帮助 返回顶部