Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses si...Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach.In this study,a unified requirement modeling approach is proposed based on unified architecture framework(UAF).Theoretical models are proposed which compose formalized descriptions from both topdown and bottom-up perspectives.Based on the description,the UAF profile is proposed to represent the SoS mission and constituent systems(CS)goal.Moreover,the agent-based simulation information is also described based on the overview,design concepts,and details(ODD)protocol as the complement part of the SoS profile,which can be transformed into different simulation platforms based on the eXtensible markup language(XML)technology and model-to-text method.In this way,the design of the SoS is simulated automatically in the early design stage.Finally,the method is implemented and an example is given to illustrate the whole process.展开更多
An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri n...An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri nets (CPNs). A structural and behavioral analysis method is adopted to obtain the static and dynamic property used to verify the CPNs model of the cognitive framework. Finally, an example from the command and control radar recognition system is used to evaluate the feasibility and availability of the CPNs model adopted in practical systems.展开更多
为保障复杂装备技术状态管理的有效集成和多方协同,实现技术状态管理业务数据的双重有序管控,提出基于领域系统(domain system,DS)的建模架构和设计方法。通过引入基于模式的系统工程(pattern-based system engineering,PBSE)框架,构建...为保障复杂装备技术状态管理的有效集成和多方协同,实现技术状态管理业务数据的双重有序管控,提出基于领域系统(domain system,DS)的建模架构和设计方法。通过引入基于模式的系统工程(pattern-based system engineering,PBSE)框架,构建基于DS的复杂装备技术状态管理基本架构,设计DS元模型、DS模型、DS模式的建模方法,将国防部体系架构元模型(Department of Defense Architecture framework metamodel,DM2)进行复杂装备技术状态管理领域化重组为DS元模型,并通过领域元数据映射为DS模型,使其有序组织为适用于具体装备技术状态管理的DS模式。为验证所提方法的有效性,以运载火箭结构系统多视图物料清单(X bill of material,XBOM)为案例,开展基于DS的技术状态管理应用。结果表明,所提方法可为其技术状态管理提供兼具建模的一致性和可追溯性的实施方案,为复杂装备技术状态管理的领域模型配置提供指导性思路。展开更多
基金Fifth Electronic Research Institute of the Ministry of Industry and Information Technology(HK07202200877)Pre-research Project on Civil Aerospace Technologies of CNSA(D020101)+2 种基金Zhejiang Provincial Science and Technology Plan Project(2022C01052)Frontier Scientific Research Program of Deep Space Exploration Laboratory(2022-QYKYJHHXYF-018,2022-QYKYJH-GCXD-001)Zhiyuan Laboratory(ZYL2024001)。
文摘Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach.In this study,a unified requirement modeling approach is proposed based on unified architecture framework(UAF).Theoretical models are proposed which compose formalized descriptions from both topdown and bottom-up perspectives.Based on the description,the UAF profile is proposed to represent the SoS mission and constituent systems(CS)goal.Moreover,the agent-based simulation information is also described based on the overview,design concepts,and details(ODD)protocol as the complement part of the SoS profile,which can be transformed into different simulation platforms based on the eXtensible markup language(XML)technology and model-to-text method.In this way,the design of the SoS is simulated automatically in the early design stage.Finally,the method is implemented and an example is given to illustrate the whole process.
基金supported by the National Natural Science Foundation of China(60874068).
文摘An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri nets (CPNs). A structural and behavioral analysis method is adopted to obtain the static and dynamic property used to verify the CPNs model of the cognitive framework. Finally, an example from the command and control radar recognition system is used to evaluate the feasibility and availability of the CPNs model adopted in practical systems.
文摘为保障复杂装备技术状态管理的有效集成和多方协同,实现技术状态管理业务数据的双重有序管控,提出基于领域系统(domain system,DS)的建模架构和设计方法。通过引入基于模式的系统工程(pattern-based system engineering,PBSE)框架,构建基于DS的复杂装备技术状态管理基本架构,设计DS元模型、DS模型、DS模式的建模方法,将国防部体系架构元模型(Department of Defense Architecture framework metamodel,DM2)进行复杂装备技术状态管理领域化重组为DS元模型,并通过领域元数据映射为DS模型,使其有序组织为适用于具体装备技术状态管理的DS模式。为验证所提方法的有效性,以运载火箭结构系统多视图物料清单(X bill of material,XBOM)为案例,开展基于DS的技术状态管理应用。结果表明,所提方法可为其技术状态管理提供兼具建模的一致性和可追溯性的实施方案,为复杂装备技术状态管理的领域模型配置提供指导性思路。