期刊文献+
共找到197,473篇文章
< 1 2 250 >
每页显示 20 50 100
基于IHHO-Stacking集成模型的车辆驾驶性评估
1
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 stacking 集成模型 客观评价
在线阅读 下载PDF
面向复杂矿区的Stacking技术辅助DS-InSAR地表形变监测方法
2
作者 李志 张书毕 +6 位作者 李鸣庚 陈强 卞和方 李世金 高延东 张艳锁 张帝 《自然资源遥感》 北大核心 2025年第4期12-20,共9页
合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术在矿区植被覆盖密集且存在大梯度地表形变复杂环境下进行监测时,存在监测点数量不足、监测精度不高等问题。针对这些问题,该文提出一种Stacking技术辅助下的... 合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术在矿区植被覆盖密集且存在大梯度地表形变复杂环境下进行监测时,存在监测点数量不足、监测精度不高等问题。针对这些问题,该文提出一种Stacking技术辅助下的改进分布式目标InSAR(distributed scatterer InSAR,DS-InSAR)方法。该方法采用置信区间假设检验算法识别同质像元并基于相位三角剖分算法完成相位优化,随后去除先期利用Stacking技术模拟的线性形变相位获取残余相位,进而稀疏形变相位条纹,提高后续DS-InSAR处理框架中时空滤波与三维解缠结果的精确性,最终补偿模拟相位获得完整形变场。通过处理2015年10月—2016年3月期间覆盖新巨龙煤矿的Sentinel-1A合成孔径雷达(synthetic aperture Radar,SAR)影像,解译了该时段内矿区时序地表形变特征,得到以下结论:监测期间,矿区存在3处显著形变,雷达视线向最大累积形变量达到-313 mm;所提方法相较常规短基线集干涉测量(small baseline subset InSAR,SBAS-InSAR)技术能够反演出分布更加均匀的监测点位信息,其密度约是SBAS-InSAR的12.9倍;对比水准数据的均方根误差(root mean squared error,RMSE)约为6.82 mm,精度较SBAS-InSAR提高了约3.0 mm。 展开更多
关键词 stacking DS-InSAR 地表形变 残余相位 矿区监测
在线阅读 下载PDF
基于HHO-Stacking的多模型融合驾驶分心识别
3
作者 翟凤娜 郑明强 付佳辉 《农业装备与车辆工程》 2025年第8期87-93,98,共8页
聚焦2种驾驶分心状态,提出基于哈里斯鹰算法优化的Stacking集成模型的集成融合驾驶分心识别模型,以提高识别准确性。先开展模拟试验,收集眼动与驾驶绩效多模态数据;再用高度比较时间序列分析法提取特征,经VLOOKUP函数处理和主成分分析降... 聚焦2种驾驶分心状态,提出基于哈里斯鹰算法优化的Stacking集成模型的集成融合驾驶分心识别模型,以提高识别准确性。先开展模拟试验,收集眼动与驾驶绩效多模态数据;再用高度比较时间序列分析法提取特征,经VLOOKUP函数处理和主成分分析降维,依此建立识别特征集;最后输入降维特征验证模型。实验表明,相比其他经典识别模型,该模型对不同分心类型状态识别准确率可达90.33%。较基础模型显著提升了输入维度和输出精度,为异常驾驶状态的识别提供了新思路。 展开更多
关键词 智能交通 驾驶分心 stacking集成算法 哈里斯鹰算法 信号时频特征
在线阅读 下载PDF
基于stacking融合机制的自动驾驶伦理决策模型 被引量:1
4
作者 刘国满 盛敬 罗玉峰 《计算机应用研究》 北大核心 2025年第2期462-468,共7页
虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽... 虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽车在伦理困境下能够作出合理决策。针对以上问题,设计了基于stacking融合机制的伦理决策模型,对机器学习和深度学习进行深度融合。一方面将基于特征依赖关系的朴素贝叶斯模型(ACNB)、加权平均一阶贝叶斯模型(WADOE)和自适应模糊模型(AFD)作为stacking融合机制上基学习器。依据先前准确率,设定各自模型权重,再运用加权平均法,计算决策结果。然后将该决策结果作为元学习器训练集,对元学习器进行训练,构建stacking融合模型。最后,运用验证集分别对深度学习模型和stacking融合模型进行验证,依据验证中平均损失率和准确率以及测试中正确率,评价和比较深度学习模型和stacking融合机制决策效果。结果表明,深度学习模型平均损失率最小为0.64,最大平均准确率为0.7,最高正确率为0.61。stacking融合机制平均损失率最小为0.35,最大平均准确率为0.90,最高正确率为0.75,说明stacking融合机制相对于深度学习模型,决策结果准确率和正确率方面有了较大改进。 展开更多
关键词 自动驾驶汽车 伦理决策 stacking融合机制 深度学习
在线阅读 下载PDF
基于递归分析和Stacking集成学习的轴承故障诊断方法 被引量:1
5
作者 黄静静 武文媗 +2 位作者 田宇 王灿 王茂发 《南京信息工程大学学报》 北大核心 2025年第2期235-244,共10页
为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定... 为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定量分析的角度出发,对应建立了卷积神经网络和支持向量机两个子模型.使用Stacking方法将两个模型进行集成,可以在一定程度上结合两个模型的不同特点,充分发挥两个不同模型的优势.实验结果表明,该方法可以有效提高轴承振动信号的分类准确率,并在不同负载条件下表现出色且稳定,为轴承故障诊断提供了一种可靠的解决方案. 展开更多
关键词 故障诊断 滚动轴承 递归分析 stacking集成学习
在线阅读 下载PDF
基于高光谱数据和Stacking集成学习算法的金矿品位快速反演
6
作者 毛亚纯 夏安妮 +4 位作者 曹旺 刘晶 文杰 贺黎明 陈煊赫 《光谱学与光谱分析》 北大核心 2025年第7期2061-2067,共7页
金矿资源具有重要的经济和金融价值,不仅为国家提供了贵重的金属资源,推动经济增长,还在增强货币稳定性和国际金融市场中的避险能力方面具有现实意义。然而,当前矿山用于金矿品位测量的化学分析法尽管精确,但存在耗时长、成本高以及药... 金矿资源具有重要的经济和金融价值,不仅为国家提供了贵重的金属资源,推动经济增长,还在增强货币稳定性和国际金融市场中的避险能力方面具有现实意义。然而,当前矿山用于金矿品位测量的化学分析法尽管精确,但存在耗时长、成本高以及药剂污染等多种问题,无法实现基于实时品位信息的矿石品位与选矿方法的自动化调整。相比之下,可见光-近红外光谱分析法因其高效、绿色环保及原位测定等优势,逐渐成为估算矿区金属品位的有效替代方法。为此以中国辽宁省二道沟、凌源和排山楼三个金矿为研究区,共采集了389个金矿样本,以SVC便携式地物光谱仪测试的高光谱数据和化学分析数据为数据源。首先对原始光谱数据进行Savitzky-Golay平滑(SG)处理,并分析金矿的光谱特征,发现反射率与金品位具有一定相关性,且在455 nm处具有金的吸收特征,基于此,利用主成分分析法(PCA)、等距特征映射(ISOMAP)和局部线性嵌入(LLE)算法对原始光谱数据进行降维处理,对应降维结果的维数分别为6,5,5。最后基于随机森林(RF)、极端随机树(ET)、决策树(DT)、梯度提升树(GBDT)和自适应增强(Adaboost)、极端梯度提升树(XGBoost)和Stacking集成学习算法对降维后的数据建立了金品位预测模型。研究结果表明,Stacking集成学习方法在各方面性能均优于单一模型,其中LLE-Stacking组合模型的精度最高,预测值与真实值的R^(2)为0.972,RPD为5.935,平均相对误差为0.231。利用本方法可以快速准确预测矿粉中金的品位,相比于传统模型的品位反演精度有明显的提升,为矿山金品位的快速、原位测定提供了新的技术手段,对金矿的高效开采具有重要意义。 展开更多
关键词 金矿品位反演 可见光-近红外光谱 降维 stacking集成学习
在线阅读 下载PDF
基于改进Stacking算法的碳酸盐岩储层测井岩性识别方法与应用
7
作者 罗水亮 漆影强 +4 位作者 唐松 阮基富 高达 刘乾乾 李生 《特种油气藏》 北大核心 2025年第4期58-67,共10页
针对川中地区碳酸盐岩储层传统岩性识别方法精度低、模型泛化能力弱的问题,提出一种基于改进Stacking算法的测井岩性识别方法。该方法融合多种机器学习模型的优势,优化特征加权策略,可提高对测井曲线关键信息的提取能力,同时增强对复杂... 针对川中地区碳酸盐岩储层传统岩性识别方法精度低、模型泛化能力弱的问题,提出一种基于改进Stacking算法的测井岩性识别方法。该方法融合多种机器学习模型的优势,优化特征加权策略,可提高对测井曲线关键信息的提取能力,同时增强对复杂岩性的识别准确性和稳定性。相比传统方法,该模型能够更有效地捕捉测井数据的非线性关系,并降低不同岩性类别间的预测混淆度。研究结果表明:该方法在四川盆地川中地区碳酸盐岩储层的岩性识别精度达到96%,较传统模型提升6个百分点,且平均相对误差更低,预测效果更优。改进的Stacking算法结合高效计算框架,可显著提升训练和预测效率,使岩性识别更加高效、可靠。该方法可有效地识别复杂岩性,为碳酸盐岩储层岩性识别提供参考。 展开更多
关键词 stacking 集成学习 特征加权 碳酸盐岩 岩性识别
在线阅读 下载PDF
基于Stacking集成学习的空管危险源数据分类
8
作者 王洁宁 闫思卿 孙禾 《科学技术与工程》 北大核心 2025年第20期8583-8594,共12页
在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下... 在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下迫切需要开发适用于空管系统的高效分类方法,以提高飞行安全水平。针对单一学习器用于空管危险源文本分类存在的类别分布较多,难以捕捉类别数据不平衡时的文本特征导致预测精度下降的问题,提出基于Stacking训练思想的、两次加权的改进集成模型。首先,参考双防机制对危险源和安全隐患完成类别划分;再采用词频-逆文档频率(term frequency-inverse document frequency, TF-IDF)算法提取预处理后的危险源文本特征完成向量化,并利用合成少数类过采样技术(synthetic minority over-sampling technique, SMOTE)和自适应合成过采样算法(adaptive synthetic sampling approach, ADASYN)分别随机生成向量化后的少数类文本,使文本数据集的类别分布趋于平衡;再从基学习器每折交叉验证的F1分数加权和基学习器之间敏感性评估机制动态加权两方面改进Stacking集成模型,提高类别不平衡危险源文本的分类性能。在所构建的数据集上的实验结果表明:相较于SMOTE+改进集成模型,ADASYN+改进集成模型的精确率、召回率和F1分数分别提升0.9、1.1和1.0个百分点,较好地抑制处理多数类别过拟合的问题,实验结果验证了所提算法的有效性。 展开更多
关键词 双防机制 空管危险源 文本分类 自适应合成过采样算法(ADASYN) stacking集成模型
在线阅读 下载PDF
基于FIR-Stacking的刀具磨损预测 被引量:1
9
作者 李备备 陈春晓 +1 位作者 郑飂默 张强 《组合机床与自动化加工技术》 北大核心 2024年第4期87-91,共5页
针对铣刀加工工件时传感器信号存在噪声、单一传统机器学习模型预测效果不理想的问题,提出一种基于自适应FIR滤波器和Stacking集成模型的刀具磨损预测方法。首先,采用自适应FIR滤波器去噪,计算时域、频域和时频域常用统计量作为信号特征... 针对铣刀加工工件时传感器信号存在噪声、单一传统机器学习模型预测效果不理想的问题,提出一种基于自适应FIR滤波器和Stacking集成模型的刀具磨损预测方法。首先,采用自适应FIR滤波器去噪,计算时域、频域和时频域常用统计量作为信号特征,并对同一信号的多源信号特征进行拼接,经Pearson相关系数筛选保留相关系数大于0.2的特征;最后,以LightGBM、支持向量回归(support vector regression,SVR)、多层感知机(multilayer perceptron,MLP)作为基模型,Lasso作为元模型,构建Stacking集成模型进行刀具磨损预测。使用铣削加工数据集进行验证,结果表明该方法可有效提高预测准确性。 展开更多
关键词 刀具磨损预测 FIR滤波器 stacking集成模型 机器学习
在线阅读 下载PDF
Stacking算法对凝给水系统故障诊断的适用性研究
10
作者 陈砚桥 孙彤 顾任利 《舰船科学技术》 北大核心 2025年第1期138-142,共5页
针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状... 针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状,以传统单一机器学习算法为基础,通过拓展建立针对Stacking算法的多分类器性能评价指标,准确寻找运行参数和故障之间的映射关系,解决了多分类器性能评价难题。并利用样本数据设计出比较Stacking算法和单一算法综合性能的试验方法,验证了Stacking模型在凝给水系统故障诊断任务中的适用性和优越性。 展开更多
关键词 凝给水系统 stacking算法 故障诊断
在线阅读 下载PDF
基于Stacking融合的LSTM-SA-RBF短期负荷预测 被引量:2
11
作者 方娜 邓心 肖威 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第4期131-137,共7页
为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis,SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简... 为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis,SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简化模型计算过程;基于Stacking框架,结合长短期记忆(long and short-term memory,LSTM)-自注意力机制(self-attention mechanism,SA)、径向基(radial base functions,RBF)神经网络和线性回归方法集成新的组合模型,同时利用交叉验证方法避免模型过拟合;选取PJM和澳大利亚电力负荷数据集进行验证。仿真结果表明,与其他模型比较,所提模型预测精度高。 展开更多
关键词 奇异谱分析 stacking算法 长短期记忆网络 径向基神经网络 短期负荷预测
在线阅读 下载PDF
考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测
12
作者 冉启武 石卓见 +2 位作者 刘阳 黄杰 张宇航 《电网技术》 北大核心 2025年第3期1098-1108,I0071-I0075,共16页
为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合... 为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合,进而将多元负荷序列分解为本征模态函数集合;其次,通过基于反向传播(back propagation,BP)神经网络扰动的平均影响值(mean impact value,MIV)算法对与多元负荷相关的气象、日期及负荷因素进行特征筛选,从而为多元负荷构建高耦合度的特征矩阵;充分考虑到各单一模型的差异性及优势性,在采用k折交叉验证法减少过拟合的基础上,构建Stacking集成学习模型对多元负荷进行预测;最后采用美国亚利桑那州立大学坦佩校区多元负荷数据集进行实例验证,结果显示所提方法在电、冷、热负荷预测中的平均绝对百分比误差分别达到了0.903%、2.713%和1.616%,预测精度相比其他预测模型具有较大提升。 展开更多
关键词 多元负荷预测 综合能源系统 平均影响值算法 stacking集成学习 金豺优化算法 复合指标
在线阅读 下载PDF
坝基灌浆量预测ISSA-Stacking集成学习代理模型研究 被引量:7
13
作者 祝玉珊 王晓玲 +3 位作者 崔博 陈文龙 轩昕祺 余红玲 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第2期174-185,共12页
灌浆量预测对坝基灌浆施工具有重要意义.由于灌浆工程隐蔽且复杂,传统方法难以实现准确高效的灌浆量预测.代理模型是一种能够建立影响因素与响应值之间近似关系的快速求解方法,然而单一代理模型的预测稳定性和准确性较低,组合代理模型... 灌浆量预测对坝基灌浆施工具有重要意义.由于灌浆工程隐蔽且复杂,传统方法难以实现准确高效的灌浆量预测.代理模型是一种能够建立影响因素与响应值之间近似关系的快速求解方法,然而单一代理模型的预测稳定性和准确性较低,组合代理模型仅将单一模型结果进行加权平均,预测精度仍有待提高.为解决上述问题,本文提出一种ISSA-Stacking集成学习代理模型新方法用于灌浆量预测研究.首先,针对灌浆量预测具有数据量小、影响因素与灌浆量之间非线性关系复杂且预测不确定性较大等特性,基于Stacking集成学习策略,选取在小样本预测中表现优越的支持向量回归(SVR)、具有良好非线性拟合能力的BP神经网络(BPNN)和预测泛化性能及稳定性高的随机森林(RF)等算法作为基学习器,采用自适应学习和不确定性处理能力强的自适应神经模糊推理系统(ANFIS)作为元学习器以集成上述机器学习算法的优势,构建具有更优预测性能和泛化能力的Stacking集成学习方法作为代理模型;其次,为进一步提高模型预测精度,采用混沌理论和Lévy飞行策略改进的麻雀搜索算法(ISSA)对集成学习代理模型进行参数同步优化;最后,将所提ISSA-Stacking集成学习代理模型应用于某实际灌浆工程的灌浆量预测并与其他方法进行对比分析.结果表明,所提方法具有较高的预测精度,绝对平均误差仅为0.21 m^(3);与组合代理模型及单一代理模型(SVR、BPNN和RF)相比,平均精度分别提高24.34%、30.84%、32.68%和26.56%,为灌浆量预测提供了一种新思路. 展开更多
关键词 灌浆量预测 stacking集成学习方法 代理模型 麻雀搜索算法
在线阅读 下载PDF
基于Stacking集成模型的膜下滴灌谷子作物系数预测
14
作者 马健涛 郭向红 +4 位作者 雷涛 白艳茹 高晓丽 张家晔 赵鹏帅 《南水北调与水利科技(中英文)》 北大核心 2025年第4期892-904,共13页
为准确模拟膜下滴灌不同水肥处理谷子作物系数(crop coefficient,K_(c)),以水肥有关K_(c)的双因素方差分析为前提,采用随机森林(random forest,RF)、类别提升(CatBoost)、轻量级梯度提升机(LightGBM)、支持向量机回归(support vector re... 为准确模拟膜下滴灌不同水肥处理谷子作物系数(crop coefficient,K_(c)),以水肥有关K_(c)的双因素方差分析为前提,采用随机森林(random forest,RF)、类别提升(CatBoost)、轻量级梯度提升机(LightGBM)、支持向量机回归(support vector regression,SVR)、深度学习(DL)作为次级机器学习模型,基于Stacking策略以多元线性回归构建集成元模型(linear stacking model,LSM)对不同水肥处理膜下滴灌谷子K_(c)进行预测,并进行模型间模拟结果精度比较。结果表明:不同水肥处理间K_(c)日际变化趋势基本相同,但灌水因素和氮肥施用量对K_(c)均有显著影响;在次级机器学习模型中,树类模型(RF、CatBoost与LightGBM)相对SVR和DL模型估测精度较好,而相比次级模型,LSM模型提高了谷子K_(c)的模拟精度;依赖日序数、太阳辐射强度、风速、日均水汽压和土壤含水率建立的LSM模型能够准确模拟膜下滴灌谷子K_(c),决定系数(R2)和均方根误差(root mean squared error, ERMS)分別为0.91和0.11,且当土壤含水率特征加入时模型误差明显降低。研究成果可为膜下滴灌田间水分精准管理提供技术支撑。 展开更多
关键词 滴灌 谷子 作物系数 机器学习模型 stacking集成模型
在线阅读 下载PDF
应用Stacking集成学习模型短期预测临夏州马铃薯产量
15
作者 任彩玉 郭小燕 +2 位作者 刘立群 涂丽珍 冯浩 《东北农业大学学报》 北大核心 2025年第2期156-167,共12页
为及时、准确地预测我国甘肃省临夏州马铃薯产量,选用HP滤波、二次指数平滑和三次指数平滑法,将2007-2022年临夏州5个县级区域马铃薯趋势产量从实际产量中分离出来,仅将气象产量作为目标变量。选用马铃薯生育期内关键气象特征因素(W):... 为及时、准确地预测我国甘肃省临夏州马铃薯产量,选用HP滤波、二次指数平滑和三次指数平滑法,将2007-2022年临夏州5个县级区域马铃薯趋势产量从实际产量中分离出来,仅将气象产量作为目标变量。选用马铃薯生育期内关键气象特征因素(W):每月的最高气温、最低温度、平均气温、露点温度、平均潜在蒸发率、降水量、太阳辐射、土壤1[地表为0cm,土层深度(h),0<h≤7cm]的中层温度、土壤2(地表为0cm,7cm<h≤28cm)的含水率,高温时间(H)和低温时间(L),将包含W、W+H、W+H+L,3种组合形式的特征因素输入模型,采用主成分分析法对特征因素进行数据降维,确立最佳输入特征因素组合。采用3种机器学习模型(随机森林、极限梯度提升、多层感知机)作为基模型,建立Stacking集成学习模型,在生长季内不同月份对马铃薯气象产量进行短期预测,并叠加趋势产量预测实际产量。结果表明:趋势分离方法中HP滤波法最优,最佳输入特征因素组合为W+H;Stacking集成学习模型具有较高的准确性(R2为0.802,RMSE为0.419),可在马铃薯成熟前4个月实现对马铃薯产量的短期预测,其中,广河县实际产量的短期预测效果最佳、永靖县效果最差。 展开更多
关键词 马铃薯 产量预测 stacking集成学习 气象因素 趋势分离
在线阅读 下载PDF
基于Stacking多模型融合的颗粒饲料质量预测方法
16
作者 吴俊华 王粮局 +4 位作者 徐际童 邹方磊 王威 郭绍永 王红英 《农业工程学报》 北大核心 2025年第15期318-326,共9页
针对颗粒饲料产品质量受饲料配方、工艺参数、设备参数以及环境参数等多重因素影响,导致颗粒饲料质量管控困难的问题,该研究提出一种基于Stacking多模型融合的颗粒饲料质量预测方法。以实际生产线上采集的数据为基础,采用随机森林算法... 针对颗粒饲料产品质量受饲料配方、工艺参数、设备参数以及环境参数等多重因素影响,导致颗粒饲料质量管控困难的问题,该研究提出一种基于Stacking多模型融合的颗粒饲料质量预测方法。以实际生产线上采集的数据为基础,采用随机森林算法和最大互信息系数进行特征筛选,构建融合多个机器学习算法的Stacking预测模型。结果表明,Stacking多模型融合算法优于单一机器学习算法,预测的颗粒硬度、颗粒耐久性指数(pellet durability index,PDI)及生产率在测试集上的均方根误差分别是2.932 N、4.830%、0.465 t/h,较各自的最优单一模型分别降低了8.26%、5.48%和10.20%;进一步采用随机森林算法量化特征贡献度发现,颗粒硬度和PDI主要受饲料配方因素主导,累计贡献率分别为87.01%和88.94%;生产率主要由喂料频率决定,贡献率为42.94%。该研究为颗粒饲料质量的精准管控提供了一种新的技术方法,为提高饲料生产设备智能化水平、精细化技术水平提供了一定的理论依据。 展开更多
关键词 饲料 预测模型 特征选择 stacking多模型融合 颗粒质量
在线阅读 下载PDF
基于变分模态分解和模糊熵分频的Stacking集成学习短期风功率预测
17
作者 郭人维 朱天龙 +3 位作者 李鹏 冷致远 李霄 陈璐 《科学技术与工程》 北大核心 2025年第24期10263-10272,共10页
风电出力具有较强的随机性、波动性和间歇性,为保障新型电力系统下大电网的安全稳定运行,亟需高精度的短期风功率预测。充分利用风功率数据的时序特征,提出一种基于皮尔逊相关系数、变分模态分解和模糊熵的Stacking集成学习短期风功率... 风电出力具有较强的随机性、波动性和间歇性,为保障新型电力系统下大电网的安全稳定运行,亟需高精度的短期风功率预测。充分利用风功率数据的时序特征,提出一种基于皮尔逊相关系数、变分模态分解和模糊熵的Stacking集成学习短期风功率预测方法。首先采用皮尔逊相关系数辨识主要气象变量;再使用变分模态分解将原始风功率序列分解成不同频率的子序列,运用模糊熵算法将各子序列划分为高低频子序列,分别建立适用于高低频率序列的Stacking集成学习短期风功率预测模型;最后经聚合重构获得最终预测结果。实际算例表明:与传统“分解-预测-分频-重构”模型对比,所提方法的平均绝对误差降低了6.0%~27.5%,显著提升了短期风功率预测的准确性。 展开更多
关键词 风功率预测 变分模态分解 模糊熵 stacking集成学习
在线阅读 下载PDF
基于DBSCAN-AIC-Stacking的混凝土抗压强度预测研究 被引量:1
18
作者 丁熠亮 文汉云 +3 位作者 李素若 柯超 杨华钟 黄锦帆 《混凝土》 北大核心 2024年第12期29-34,共6页
为解决实际工程中混凝土的强度预期问题,采用堆叠集成算法(Stacking),并引入水灰比作为新特征,结合基于密度聚类算法(DBSCAN)和赤池信息准则(AIC)的基模型选择方法,提出DBSCAN-AIC-Stacking(DASA)模型以提高混凝土抗压强度预测的准确性... 为解决实际工程中混凝土的强度预期问题,采用堆叠集成算法(Stacking),并引入水灰比作为新特征,结合基于密度聚类算法(DBSCAN)和赤池信息准则(AIC)的基模型选择方法,提出DBSCAN-AIC-Stacking(DASA)模型以提高混凝土抗压强度预测的准确性。DASA模型的预测结果大部分落在±10%的范围内,在实际工程中具有显著的优势,为混凝土强度预测问题提供了一种可行且有效的解决方案。 展开更多
关键词 抗压强度 集成学习 力学性能 stacking 模型选择
在线阅读 下载PDF
基于SMOTEENN-CGAN-Stacking的岩爆烈度等级预测研究 被引量:2
19
作者 高梅 张成良 +1 位作者 张华超 吴泽鑫 《工程地质学报》 CSCD 北大核心 2024年第6期2264-2276,共13页
随着地下工程的不断发展和扩大规模,岩爆灾害在施工过程中频繁发生,对工程及施工人员生命造成了严重威胁。因此,岩爆烈度等级预测成为防范岩爆灾害的重要的研究方向。本文选取围岩最大切应力σ_(θ)、单轴抗压强度σ_(c)、单轴抗拉强度... 随着地下工程的不断发展和扩大规模,岩爆灾害在施工过程中频繁发生,对工程及施工人员生命造成了严重威胁。因此,岩爆烈度等级预测成为防范岩爆灾害的重要的研究方向。本文选取围岩最大切应力σ_(θ)、单轴抗压强度σ_(c)、单轴抗拉强度σ_(t)和弹性能量指数W_(et)作为预测模型的4个特征值,提出了一种基于SMOTEENN-CGAN数据处理的Stacking集成算法的组合模型,用于岩爆烈度等级的预测。在该模型中,首先使用SMOTEENN和CGAN算法以过采用、欠采样、对抗生成的方法处理原始数据;随后采用10种经典算法验证SMOTEENN-CGAN的有效性;最后以Stacking集成算法构建出4组含不同基模型和元模型的岩爆烈度等级预测模型。结果表明:(1)SMOTEENN-CGAN能用于处理多分类问题,新生成的岩爆数据符合原始分布特征,预处理后的数据特征值离散程度,异常点明显减少;(2)数据经过预处理后,10种经典算法的性能得到不同程度的提升,各算法的平均准确率提高了1.87%~7.75%不等;其中MLP与NP提高较多,分别为7.75%与7.43%。(3)不同的基模型与元模型的搭配会影响Stacking的性能,在组合(4)中,基模型为XGBoost+LGBM+ETC时,元模型中的Adaboost最高预测准确率为96.12%。通过工程实例验证Stacking岩爆烈度等级预测模型的可靠性时,预测最高准确率可达92.3%。本文模型为岩爆烈度预测提供了一种有效可行的机器学习预测方法。 展开更多
关键词 不平衡数据集 CGAN SMOTEENN stacking 岩爆烈度等级预测
在线阅读 下载PDF
基于Stacking集成学习的铜矿尾矿水泥基材料抗压强度预测与性能优化研究
20
作者 段素萍 荀亚玲 《水利水电技术(中英文)》 北大核心 2025年第6期253-268,共16页
【目的】由于环境问题日益严重以及资源日趋紧缺,铜尾矿砂在水泥基材料中的可持续利用受到了广泛关注。然而,由于材料成分之间的复杂相互作用,准确预测掺入铜尾矿砂的水泥基材料的抗压强度仍然是一项挑战。利用Stacking集成学习方法构... 【目的】由于环境问题日益严重以及资源日趋紧缺,铜尾矿砂在水泥基材料中的可持续利用受到了广泛关注。然而,由于材料成分之间的复杂相互作用,准确预测掺入铜尾矿砂的水泥基材料的抗压强度仍然是一项挑战。利用Stacking集成学习方法构建高精度预测模型,并优化混合设计,以提高材料的力学性能。【方法】通过试验研究不同铜尾矿砂掺量(0%、5%、10%、15%和20%)以及不同水胶比(0.35和0.45)对水泥基材料抗压强度的影响。为增强模型的泛化能力,采用数据融合方法,将试验数据与公开的混凝土抗压强度数据集相结合,建立包含698组样本的数据集。基于K近邻回归、支持向量回归、决策树和随机森林构建Stacking集成学习模型,并以RF作为次级学习器。此外,利用贝叶斯优化方法对模型超参数进行调优,以提升模型的预测性能。通过均方根误差、标准差、平均绝对百分比误差以及决定系数等指标对Stacking模型的预测效果进行评估,并与单一机器学习模型进行对比。【结果】试验结果表明,随着铜尾矿砂掺量的增加,水泥基材料的抗压强度整体呈下降趋势,尤其当掺量超过15%时,强度下降较为显著。28 d龄期时,试验样品的抗压强度最高,表明水化反应效果良好。Stacking集成学习模型在抗压强度预测任务中表现最佳,RMSE=0.37,SD=0.16,MAPE=0.91%,R^(2)=0.991,显著优于单一机器学习模型。在单一模型中,RF表现最佳(RMSE=2.57,R^(2)=0.977),而KNN预测性能最差(R^(2)=0.967)。【结论】构建了一种基于Stacking集成学习的铜尾矿砂水泥基材料抗压强度预测模型,并通过贝叶斯优化进一步提升了模型的预测精度。研究结果表明,优化水胶比及铜尾矿砂掺量对于改善水泥基材料的力学性能至关重要。所提出的Stacking预测模型可为水泥基材料的配合比优化提供可靠的数据支持,推动铜尾矿砂在建筑材料中的可持续应用。 展开更多
关键词 铜尾矿砂 抗压强度 预测 机器学习 stacking集成 影响因素
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部