期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
“Polymer-in-ceramic” based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries 被引量:4
1
作者 Bohao Zhang Yulong Liu +7 位作者 Jia Liu Liqun Sun Lina Cong Fang Fu Alain Mauger Christian M.Julien Haiming Xie Xiumei Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期318-325,I0010,共9页
Inspired by the concept of "polymer-in-ceramic",a composite poly(ε-caprolactone)(PCL)/ceramic containing LiTFSI is prepared and investigated as a solid electrolyte for all-solid-state batteries.The composit... Inspired by the concept of "polymer-in-ceramic",a composite poly(ε-caprolactone)(PCL)/ceramic containing LiTFSI is prepared and investigated as a solid electrolyte for all-solid-state batteries.The composite with the optimum concentration of 45 wt% LiTFSI and 75 wt% Li1.5Al0.5Ge1.5(PO4)3(LAGP,NASICON-type structure) exhibits a high ionic conductivity(σi=0.17 mS cm-1) at 30℃,a transference number of 0.30,and is stable up to 5.0 V.The composite electrolyte is a flexible and self-standing membrane.Solid-state LiFePO4//Li batteries with this composite electrolyte demonstrate excellent cycling stability with high discharge capacity of 157 mA h g-1,high capacity retention of 96% and coulombic efficiency of 98.5% after 130 cycles at 30℃ and 0.1 C rate.These electrochemical properties are better than other PCL-based allsolid-lithium batteries,and validate the concept of "polymer-in-ceramic" by avoiding the drawback of lower conductivity in prior "polymer-in-ceramic" electrolyte at high concentration of the ceramic. 展开更多
关键词 All-solid-state electrolyte Polymer-in-ceramic Poly(ε-caprolactone)/LAGP composite High fluorinated SEI layer
在线阅读 下载PDF
Study on two kinds of degradation mechanisms for biomaterials poly(ε-caprolactone)
2
作者 陈建海 陈一民 陈志良 《Journal of Medical Colleges of PLA(China)》 CAS 1999年第3期176-179,192,共5页
The in vitro and in vivo degradation behaviour of poly (ε-caprolactone) (PCL) has been examined in terms of degree of degradation and morphological change during an inclibation period of up to 300 d. Gel permeation c... The in vitro and in vivo degradation behaviour of poly (ε-caprolactone) (PCL) has been examined in terms of degree of degradation and morphological change during an inclibation period of up to 300 d. Gel permeation chromatography (GPC) and differential scanning calorimetry (DSC) were employed to character ize their degradation profiles. The observation of the changes in intrinsic viscosity and average molecular weight as well as the crystallinity of PCL leads to the findings that 2 degradation mechanisms of PCL exist. The subcutaneous implant test shows that the rate of degradation in the rabbit body is much higher than in vitro. This illustrated that in vivo, the mechanism of bioerosion is more important than hydrolytic cleavage of ester linkage, especially in the second stage of degradation. Regardless of the initial Mn of specimens, a lin ear relationship between Mn and degradation time has been observed until the Mn decreased to be about 5 ooo D. Above this figure, the main degradation mechanism was hydrolytic cleavage of ester group accompa nied by enzymatic surface erosion, below this point, the bioerosion with weight loss plays a more significant role than hydrolytic reaction in their degradation. Comparison between the morphology of PCL materials af ter and before erosion was made by means of scanning electron microscopy (SEM). 展开更多
关键词 BIODEGRADATION POLY (ε-caprolactone) BIOMATERIALS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部