WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
Transient over voltages due to lightning and switching surges cause steep build-up of voltage on transmission lines and other electrical apparatus,like circuit breakers,transformers,insulators etc.Therefore it is nece...Transient over voltages due to lightning and switching surges cause steep build-up of voltage on transmission lines and other electrical apparatus,like circuit breakers,transformers,insulators etc.Therefore it is necessary for the GIS also to withstand such voltages without breakdown of Insulation.The system has to be tested under these conditions.Usually the GIS system operates on power frequency.Lightning Impulse Voltage of 1050 kV and Switching Impulse Voltage of 750 kV superimposed on Power frequency voltages of 75 kV,100 kV and 132 kV are applied to Single Phase Gas Insulated Busduct and the maximum movement of Aluminum,Copper and Silver particles is determined.The movement patterns are also determined with and without Monte Carlo Simulation for movement of particle in axial and radial directions.The results show that there is a sudden jump in the movement at the application of impulse on sine wave.This is because of high magnitude voltage of 1050 kV during 1.2/50 μs.Similar movement patterns of reduced maximum movement is observed for Switching Impulse superimposed on sine wave.The results are presented and analyzed.展开更多
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high com...Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.展开更多
Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoe...Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.展开更多
During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura...During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect.展开更多
Al-doped manganese dioxide(MnO_(2))was synthesized by simple hydrothermal method,and a controllable phase transition of the MnO_(2)crystal phase fromβtoδwas achieved.The effects of Al doping concentration on the str...Al-doped manganese dioxide(MnO_(2))was synthesized by simple hydrothermal method,and a controllable phase transition of the MnO_(2)crystal phase fromβtoδwas achieved.The effects of Al doping concentration on the structure and electrochemical properties of electrode materials were studied in detail.The results show that the controlled synthesis requires a synergy between KMnO_(4),MnCl_(2)and AlCl_(3),and that Al^(3+)plays an important role.Compared with the pure phase MnO_(2),the crystallinity of Al-doped MnO_(2)decreases and the specific surface area increases,which provides more active sites for the electrode material.When 3 mmol Al^(3+)is added,the prepared MnO_(2)-3 has the largest specific capacitance and the highest rate performance.The energy density of the asymmetric supercapacitor(ASC)with MnO_(2)-3 as the positive electrode and activated carbon(AC)as the negative electrode can reach 18.4 W·h/kg at the power density of 400 W/kg,and the capacity can maintain 90%of the initial value after 20000 cycles,indicating that Al-doped MnO_(2)has certain practical application value.This study provides favorable guidance for MnO_(2)as a high performance electrode material.展开更多
To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundati...To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.展开更多
Trace amounts of Zr and V can increase the recrystallization temperature of Al-Mg-Si wrought aluminum alloys,which is expected to regulate the recrystallization grain.In this paper,trace amounts of V and Zr were added...Trace amounts of Zr and V can increase the recrystallization temperature of Al-Mg-Si wrought aluminum alloys,which is expected to regulate the recrystallization grain.In this paper,trace amounts of V and Zr were added to recycled Al-Mg-Si alloys,and their e ffects on the microstructure and mechanical properties of the cast alloys were studied by scanning electron microscopy(SEM)and synchrotron radiation X-ray tomography(SRXT).The results show that the addition of Zr significantly increases the grain sizes due to the“Zr poisoning”;V addition has no significant effect on the grain size.The morphology of Fe-rich phase gradually changes from the large Chinese-script shape to the fine short rod and curved long strip shape,and the distribution uniformity is improved with the combined addition of V and Zr.The three-dimensional(3 D)morphology of Fe-rich phase includes granular,short rod-like,simple branch and multi-branch structures.The individual addition of V and Zr has no significant effect on the morphology of Fe-rich phase;but the combined addition of V and Zr significantly increases the number and volume fraction of Fe-rich phase with small size(diameter£15μm),the number of branches in the largest Fe-rich phase is significantly reduced,resulting in the improvement of elongation.This work provides a theoretical basis for the development of new recycled Al-Mg-Si alloys in industrial application.展开更多
Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent therma...Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent thermal stability and high-voltage short-pulse initiation performance. However, the solid phase ripening of ultrafine HNS leads to a degradation in its impact detonation performance. Previous studies have indicated that residual dimethyl formamide(DMF), which is present in ultrafine HNS prepared using the recrystallization method, affects ultrafine HNS ripening. The mechanism of residual solvent effects on solid phase ripening of ultrafine HNS is unclear. In this work, the specific surface area(SSA) derived from small angle X-ray scattering(SAXS) was utilized for kinetic fitting analysis to explore the mechanism by which residual solvents enhance the solid phase ripening of ultrafine HNS. The results of the SSA measured by insitu SAXS under conditions of 150℃ for 40 h revealed that the sample with 0.2% residual DMF exhibited a 21.51% decrease in SSA, whereas the sample with only 0.04% residual DMF showed a decrease of 15.66%.Furthermore, the higher amounts of residual DMF accelerated the reduction in SSA with time. Kinetic fitting analysis demonstrated that reducing residual DMF would lower both the activation energy and the pre-exponential factor, consequently decreasing the rate constant of solid phase ripening. The mechanism was speculated that it primarily facilitated the Ostwald ripening(OR). Additionally, contrast variation small angle X-ray scattering(CV-SAXS) confirmed that coating of ultrafine HNS particles is an effective method for inhibiting ripening, significantly reducing both the rate and extent of ripening of ultrafine HNS. This study predicts how residual solvents impact the solid phase ripening process of ultrafine HNS and proposes strategies for enhancing the long-term stability of ultrafine explosives.展开更多
Ultrathin 2D niobium oxide dichloride(NbOCl_(2))is an emerging member of the 2D ferroelectric material family with extensive potential to provide multifunctionality in electronic devices and nanophotonics elements.It ...Ultrathin 2D niobium oxide dichloride(NbOCl_(2))is an emerging member of the 2D ferroelectric material family with extensive potential to provide multifunctionality in electronic devices and nanophotonics elements.It exhibits negligible interlayer electronic coupling and significant excitonic behavior in the bulk state.Here we substantiate that NbOCl_(2) nanosheets can be exfoliated and effectively size-selected using controlled centrifugation techniques by the liquid phase exfoliation(LPE)method.Spectroscopic measurements displayed that the variations in dispersion were highly dependent on the nanosheet dimensions.The nanosheets seemed to be comparatively defect-free which will be further corroborated by high resolution transmission electron microscopy(HRTEM)and Raman analysis.The size selected nanosheets are unanticipated stable in isopropyl alcohol(IPA),possibly owing to the protective influence of a solvation shell.Additionally,the photothermal conversion response and photothermal stability of nanosized NbOCl_(2) were investigated.Our finding revealed that NbOCl_(2) possesses a robust photothermal agent property,boasting a photothermal conversion efficiency of more than 30%.This underscores its promising potential for various photothermal applications in different fields such as photothermal therapy and thermal energy conversion.展开更多
In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the me...In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the measurement requirements of wide bandwidth and high accuracy spectral lines,we built a CTS system with an analysis bandwidth of 1 GHz and a frequency resolution of 100 kHz around the surface acoustic wave(SAW)chirp filter with a bandwidth of 1 GHz.In this paper,the relationship between the CTS nonlinear phase error shift model and the basic measurement parameters is studied,and the effect of CTS phase mismatch on the pulse compression waveform is analyzed by simulation.And the expander error optimization method is proposed for the problem that the large nonlinear error of the expander leads to the unbalanced response of the CTS system and the serious distortion of the compressed pulse waveform under large bandwidth.It is verified through simulation and experiment that the method is effective for reducing the root mean square error(RMSE)of the phase of the expander from 18.75°to 6.65°,reducing the in-band standard deviation of the CTS frequency resolution index from 8.43 kHz to 4.72 kHz,solving the problem of serious distortion of the compressed pulse waveform,and improving the uneven CTS response under large bandwidth.展开更多
The coarsening of particles dispersed in a solution was found by Ostwald in 1900. Then, the following cubic law between mean radius (r-) and annealing time (t) was established by Lifshitz-Slyozov and Wagner in 1961. I...The coarsening of particles dispersed in a solution was found by Ostwald in 1900. Then, the following cubic law between mean radius (r-) and annealing time (t) was established by Lifshitz-Slyozov and Wagner in 1961. It should be noted,however,that the above equation is valid in the coarsening of B particles in A-B solution.Therefore,some modification is necessary in the case of multi-component materials.For instance,the coarsening of (Fe,Cr)aCb in γFe-M-C matrix is described s folows;According to Eq.(2),the coarsening rate of M23C6 in heat-resistant steel(9%Cr^1%W-0.1%C)depends on the diffusion rate of Cr,because.However,experimental data inform us that the rate-de-termining element is not Cr but W as shown in Fig.1The problem is solved by modifing the formula of M23C6 from (Fe,Cr,W)23C6to Fe4(Cr,W)19C6 in this case (Fig.2).Consequently,the coarsening equation is expressed as follows.展开更多
Hydrothermal method was used to synthesize nanoscale particles of MnZn ferrites. The crystallites were characterized by XRD, TEM and SEM. The effects of the reaction time, temperature and additives on the product were...Hydrothermal method was used to synthesize nanoscale particles of MnZn ferrites. The crystallites were characterized by XRD, TEM and SEM. The effects of the reaction time, temperature and additives on the product were investigated. Crystallization process would be carried out above 160 ℃ for 5 h or more, higher temperature can reduce the reaction time. Additives were used to remove impurities such as Fe 2O 3, ZnMnO 3.10~15 nm pure slightly agglomerated MnZn ferrite crystallites with a narrow grain size distribution were obtained.展开更多
The slurry pump is the key component of a dredger. Solid particles have strong influence on the performance of a slurry pump. The movement of solid particles in a centrifugal impeller was studied using particle image ...The slurry pump is the key component of a dredger. Solid particles have strong influence on the performance of a slurry pump. The movement of solid particles in a centrifugal impeller was studied using particle image velocimetry(PIV) measurement. The experiments were conducted in a dredging pump model at Hohai University. Some transparent glass spheres with diameter of 0. 2-0. 4 mm were used as solid particles. The concentration and relative velocities of the particles were analyzed to investigate the particle trajectory. The results show that the concentration of the particles on the pressure surfaces of the blades is higher than on the suction surfaces,and the particles tend to move towards the suction surfaces. Moreover,the particles have faster relative velocities than the liquid phase through the flow channels of the impeller.展开更多
In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including eva...In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including evaluating indicators, effects of operating factors, effect of particle uniformity on the flotation and formation mechanism of particle uniformity. Experiment of HPGR finished grinding system, cationic reverse flotation experiment and simulation test of particle bed comminution under the condition of quasi-static were carried out. Theoretical analyses indicated that both of uniformity coefficient and average particle size should be included in the uniformity analysis of the mineral particles. The results show that the effect of circulation fan impeller speed on particle uniformity is the most evident, HPGR working pressure and roll gap are second and HPGR roller speed is the last. Average particle size has a more obvious effect on the grade of flotation concentrate while uniformity coefficient has a more obvious effect on the flotation recovery. Considering the two aspects of grade and recovery, the optimal uniformity coefficient for flotation is 1.1-1.2 and the optimal average particle size for flotation is 50-55 μm. The operating factors which promote the shielding effect and compact effect in the HPGR finished grinding system should be strengthened based on the uniformity of particles.展开更多
The failure of spur gears operating in highly contaminated media was studied. In fact, the effect of the presence of solid particles in gear mechanisms during surface tooth contact was observed. It is shown that the s...The failure of spur gears operating in highly contaminated media was studied. In fact, the effect of the presence of solid particles in gear mechanisms during surface tooth contact was observed. It is shown that the solid contaminants lead to significant wear in the first few operating cycles, in zones with a high rate of sliding. The scanning electron microscopy(SEM) images show clearly that the wear is more significant for a dry contact in the presence of larger size particles. Indeed, the presence of contaminants leads to an increase in friction, and therefore raises the temperature and the vibration levels when the operation of gear mechanism becomes very severe especially for a dry contact under the effect of larger size particles. On the other hand, we have tried to obtain a better understanding and a good description of wear debris distributions in gear mechanisms by using unimodal, single distribution models(Weibull and three-parameter Weibull).展开更多
The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-ener...The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-energy density,heat of formation and fast initial rate are considered as potential chemical fuels.As the high-energy density material,hexanitrohexaazaisowurtzitane(CL-20)often serves as secondary explosive with poor self-propagating combustion behaviors.Herein,90%loading CL-20 microspheres with uniform particle sizes are precisely prepared by microfluid method,which exhibit unique hierarchical structure.The morphology,thermal behaviors,as well as combustion performance were further investigated.The results demonstrated that as-prepared spherical particles exhibit prominent thermal compatibility,and the enhanced self-sustaining combustion performance.This work provides an efficient method achieving the uniform high-energy density particles with excellent self-sustaining combustion performance.展开更多
In order to improve the wear resistance and high temperature oxidation resistance of titanium and titanium alloy, the high temperature ultra fine ceramic coating containing nano-size nickel particles was prepared by f...In order to improve the wear resistance and high temperature oxidation resistance of titanium and titanium alloy, the high temperature ultra fine ceramic coating containing nano-size nickel particles was prepared by flow coat method on the surface of industrially pure titanium TB1-0. The effects of nano-size nickel particles on the wear resistance and high temperature oxidation resistance of coating substrate system were investigated through oxidation kinetics experiment and wear resistance test. The morphologies of the specimens were examined by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The results show that the high temperature ultra fine ceramic coating has notable protection effect on industrially pure titanium TB1-0 from oxidation. The oxidation and wear resistance properties of the coating can be effectively improved by adding nano-size nickel particles. The oxidative mass gain of the specimen decreases from 11.33 mg·cm-2 to 5.25 mg·cm-2 and the friction coefficient decreases from 1.1 to 0.6 by adding nano-size nickel particles, and the coating containing 10% (mass fraction) nano-size nickel shows the optimum properties.展开更多
The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties.A mathematical procedure called spherical harmonic function analysis was here de...The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties.A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner.This method has strong mathematical properties with respect to orthogonality and rotating invariance.It was used here to characterize and reconstruct particle micromorphology in three-dimensional space.The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area.The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases,and the error can be brought below 5%when the order number reaches 10.This level of precision is sharp enough to distinguish the characteristics of real particles.Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples,and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D.Results show that the higher the spherical harmonic order of reconstructed particles,the lower the initial compression modulus and the larger the strain at peak intensity.However,peak strength shows only a random relationship to spherical harmonic order.Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.展开更多
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.
文摘Transient over voltages due to lightning and switching surges cause steep build-up of voltage on transmission lines and other electrical apparatus,like circuit breakers,transformers,insulators etc.Therefore it is necessary for the GIS also to withstand such voltages without breakdown of Insulation.The system has to be tested under these conditions.Usually the GIS system operates on power frequency.Lightning Impulse Voltage of 1050 kV and Switching Impulse Voltage of 750 kV superimposed on Power frequency voltages of 75 kV,100 kV and 132 kV are applied to Single Phase Gas Insulated Busduct and the maximum movement of Aluminum,Copper and Silver particles is determined.The movement patterns are also determined with and without Monte Carlo Simulation for movement of particle in axial and radial directions.The results show that there is a sudden jump in the movement at the application of impulse on sine wave.This is because of high magnitude voltage of 1050 kV during 1.2/50 μs.Similar movement patterns of reduced maximum movement is observed for Switching Impulse superimposed on sine wave.The results are presented and analyzed.
文摘Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.
基金National Natural Science Foundation of China (52202139, 52072178)。
文摘Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.
文摘During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect.
基金Project(202203021221138)supported by the Collaborative Innovation Center for Shanxi Advanced Permanent Materials and Technologythe 1331 Engineering of Shanxi ProvinceFundamental Research Program of Shanxi Province,China。
文摘Al-doped manganese dioxide(MnO_(2))was synthesized by simple hydrothermal method,and a controllable phase transition of the MnO_(2)crystal phase fromβtoδwas achieved.The effects of Al doping concentration on the structure and electrochemical properties of electrode materials were studied in detail.The results show that the controlled synthesis requires a synergy between KMnO_(4),MnCl_(2)and AlCl_(3),and that Al^(3+)plays an important role.Compared with the pure phase MnO_(2),the crystallinity of Al-doped MnO_(2)decreases and the specific surface area increases,which provides more active sites for the electrode material.When 3 mmol Al^(3+)is added,the prepared MnO_(2)-3 has the largest specific capacitance and the highest rate performance.The energy density of the asymmetric supercapacitor(ASC)with MnO_(2)-3 as the positive electrode and activated carbon(AC)as the negative electrode can reach 18.4 W·h/kg at the power density of 400 W/kg,and the capacity can maintain 90%of the initial value after 20000 cycles,indicating that Al-doped MnO_(2)has certain practical application value.This study provides favorable guidance for MnO_(2)as a high performance electrode material.
基金Projects(51878103,52208370)supported by the National Natural Science Foundation of ChinaProject(cstc2020jcyjcxtt X0003)supported by the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,ChinaProject(2022CDJQY-012)supported by the Fundamental Research Funds for the Central Universities,China。
文摘To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.
基金Project(2024YEE0109100) supported by the National Key R&D Program of ChinaProjects(52074131,52104373) supported by the National Natural Science Foundation of ChinaProjects(2022YFJH001,2024YFJH001) supported by the Science and Technology Plan Program of Qingyuan City,China。
文摘Trace amounts of Zr and V can increase the recrystallization temperature of Al-Mg-Si wrought aluminum alloys,which is expected to regulate the recrystallization grain.In this paper,trace amounts of V and Zr were added to recycled Al-Mg-Si alloys,and their e ffects on the microstructure and mechanical properties of the cast alloys were studied by scanning electron microscopy(SEM)and synchrotron radiation X-ray tomography(SRXT).The results show that the addition of Zr significantly increases the grain sizes due to the“Zr poisoning”;V addition has no significant effect on the grain size.The morphology of Fe-rich phase gradually changes from the large Chinese-script shape to the fine short rod and curved long strip shape,and the distribution uniformity is improved with the combined addition of V and Zr.The three-dimensional(3 D)morphology of Fe-rich phase includes granular,short rod-like,simple branch and multi-branch structures.The individual addition of V and Zr has no significant effect on the morphology of Fe-rich phase;but the combined addition of V and Zr significantly increases the number and volume fraction of Fe-rich phase with small size(diameter£15μm),the number of branches in the largest Fe-rich phase is significantly reduced,resulting in the improvement of elongation.This work provides a theoretical basis for the development of new recycled Al-Mg-Si alloys in industrial application.
基金the Presidential Foundation of CAEP(Grant No.YZJJZQ2023005)the National Natural Science Foundation of China(Grant No.22375191).
文摘Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent thermal stability and high-voltage short-pulse initiation performance. However, the solid phase ripening of ultrafine HNS leads to a degradation in its impact detonation performance. Previous studies have indicated that residual dimethyl formamide(DMF), which is present in ultrafine HNS prepared using the recrystallization method, affects ultrafine HNS ripening. The mechanism of residual solvent effects on solid phase ripening of ultrafine HNS is unclear. In this work, the specific surface area(SSA) derived from small angle X-ray scattering(SAXS) was utilized for kinetic fitting analysis to explore the mechanism by which residual solvents enhance the solid phase ripening of ultrafine HNS. The results of the SSA measured by insitu SAXS under conditions of 150℃ for 40 h revealed that the sample with 0.2% residual DMF exhibited a 21.51% decrease in SSA, whereas the sample with only 0.04% residual DMF showed a decrease of 15.66%.Furthermore, the higher amounts of residual DMF accelerated the reduction in SSA with time. Kinetic fitting analysis demonstrated that reducing residual DMF would lower both the activation energy and the pre-exponential factor, consequently decreasing the rate constant of solid phase ripening. The mechanism was speculated that it primarily facilitated the Ostwald ripening(OR). Additionally, contrast variation small angle X-ray scattering(CV-SAXS) confirmed that coating of ultrafine HNS particles is an effective method for inhibiting ripening, significantly reducing both the rate and extent of ripening of ultrafine HNS. This study predicts how residual solvents impact the solid phase ripening process of ultrafine HNS and proposes strategies for enhancing the long-term stability of ultrafine explosives.
基金Projects(62275275,11904239)supported by the National Natural Science Foundation of ChinaProjects(2021JJ40709,2022JJ20080)supported by the Natural Science Foundation of Hunan Province,China。
文摘Ultrathin 2D niobium oxide dichloride(NbOCl_(2))is an emerging member of the 2D ferroelectric material family with extensive potential to provide multifunctionality in electronic devices and nanophotonics elements.It exhibits negligible interlayer electronic coupling and significant excitonic behavior in the bulk state.Here we substantiate that NbOCl_(2) nanosheets can be exfoliated and effectively size-selected using controlled centrifugation techniques by the liquid phase exfoliation(LPE)method.Spectroscopic measurements displayed that the variations in dispersion were highly dependent on the nanosheet dimensions.The nanosheets seemed to be comparatively defect-free which will be further corroborated by high resolution transmission electron microscopy(HRTEM)and Raman analysis.The size selected nanosheets are unanticipated stable in isopropyl alcohol(IPA),possibly owing to the protective influence of a solvation shell.Additionally,the photothermal conversion response and photothermal stability of nanosized NbOCl_(2) were investigated.Our finding revealed that NbOCl_(2) possesses a robust photothermal agent property,boasting a photothermal conversion efficiency of more than 30%.This underscores its promising potential for various photothermal applications in different fields such as photothermal therapy and thermal energy conversion.
文摘In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the measurement requirements of wide bandwidth and high accuracy spectral lines,we built a CTS system with an analysis bandwidth of 1 GHz and a frequency resolution of 100 kHz around the surface acoustic wave(SAW)chirp filter with a bandwidth of 1 GHz.In this paper,the relationship between the CTS nonlinear phase error shift model and the basic measurement parameters is studied,and the effect of CTS phase mismatch on the pulse compression waveform is analyzed by simulation.And the expander error optimization method is proposed for the problem that the large nonlinear error of the expander leads to the unbalanced response of the CTS system and the serious distortion of the compressed pulse waveform under large bandwidth.It is verified through simulation and experiment that the method is effective for reducing the root mean square error(RMSE)of the phase of the expander from 18.75°to 6.65°,reducing the in-band standard deviation of the CTS frequency resolution index from 8.43 kHz to 4.72 kHz,solving the problem of serious distortion of the compressed pulse waveform,and improving the uneven CTS response under large bandwidth.
文摘The coarsening of particles dispersed in a solution was found by Ostwald in 1900. Then, the following cubic law between mean radius (r-) and annealing time (t) was established by Lifshitz-Slyozov and Wagner in 1961. It should be noted,however,that the above equation is valid in the coarsening of B particles in A-B solution.Therefore,some modification is necessary in the case of multi-component materials.For instance,the coarsening of (Fe,Cr)aCb in γFe-M-C matrix is described s folows;According to Eq.(2),the coarsening rate of M23C6 in heat-resistant steel(9%Cr^1%W-0.1%C)depends on the diffusion rate of Cr,because.However,experimental data inform us that the rate-de-termining element is not Cr but W as shown in Fig.1The problem is solved by modifing the formula of M23C6 from (Fe,Cr,W)23C6to Fe4(Cr,W)19C6 in this case (Fig.2).Consequently,the coarsening equation is expressed as follows.
文摘Hydrothermal method was used to synthesize nanoscale particles of MnZn ferrites. The crystallites were characterized by XRD, TEM and SEM. The effects of the reaction time, temperature and additives on the product were investigated. Crystallization process would be carried out above 160 ℃ for 5 h or more, higher temperature can reduce the reaction time. Additives were used to remove impurities such as Fe 2O 3, ZnMnO 3.10~15 nm pure slightly agglomerated MnZn ferrite crystallites with a narrow grain size distribution were obtained.
文摘The slurry pump is the key component of a dredger. Solid particles have strong influence on the performance of a slurry pump. The movement of solid particles in a centrifugal impeller was studied using particle image velocimetry(PIV) measurement. The experiments were conducted in a dredging pump model at Hohai University. Some transparent glass spheres with diameter of 0. 2-0. 4 mm were used as solid particles. The concentration and relative velocities of the particles were analyzed to investigate the particle trajectory. The results show that the concentration of the particles on the pressure surfaces of the blades is higher than on the suction surfaces,and the particles tend to move towards the suction surfaces. Moreover,the particles have faster relative velocities than the liquid phase through the flow channels of the impeller.
基金Project(2013EG132088)supported by Special Program for Research Institutes of the Ministry of Science and Technology,ChinaProject(12010402c187)supported by Key Science and Technology Program of Anhui Province,China
文摘In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including evaluating indicators, effects of operating factors, effect of particle uniformity on the flotation and formation mechanism of particle uniformity. Experiment of HPGR finished grinding system, cationic reverse flotation experiment and simulation test of particle bed comminution under the condition of quasi-static were carried out. Theoretical analyses indicated that both of uniformity coefficient and average particle size should be included in the uniformity analysis of the mineral particles. The results show that the effect of circulation fan impeller speed on particle uniformity is the most evident, HPGR working pressure and roll gap are second and HPGR roller speed is the last. Average particle size has a more obvious effect on the grade of flotation concentrate while uniformity coefficient has a more obvious effect on the flotation recovery. Considering the two aspects of grade and recovery, the optimal uniformity coefficient for flotation is 1.1-1.2 and the optimal average particle size for flotation is 50-55 μm. The operating factors which promote the shielding effect and compact effect in the HPGR finished grinding system should be strengthened based on the uniformity of particles.
文摘The failure of spur gears operating in highly contaminated media was studied. In fact, the effect of the presence of solid particles in gear mechanisms during surface tooth contact was observed. It is shown that the solid contaminants lead to significant wear in the first few operating cycles, in zones with a high rate of sliding. The scanning electron microscopy(SEM) images show clearly that the wear is more significant for a dry contact in the presence of larger size particles. Indeed, the presence of contaminants leads to an increase in friction, and therefore raises the temperature and the vibration levels when the operation of gear mechanism becomes very severe especially for a dry contact under the effect of larger size particles. On the other hand, we have tried to obtain a better understanding and a good description of wear debris distributions in gear mechanisms by using unimodal, single distribution models(Weibull and three-parameter Weibull).
基金supported by the Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.20fksy18)。
文摘The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-energy density,heat of formation and fast initial rate are considered as potential chemical fuels.As the high-energy density material,hexanitrohexaazaisowurtzitane(CL-20)often serves as secondary explosive with poor self-propagating combustion behaviors.Herein,90%loading CL-20 microspheres with uniform particle sizes are precisely prepared by microfluid method,which exhibit unique hierarchical structure.The morphology,thermal behaviors,as well as combustion performance were further investigated.The results demonstrated that as-prepared spherical particles exhibit prominent thermal compatibility,and the enhanced self-sustaining combustion performance.This work provides an efficient method achieving the uniform high-energy density particles with excellent self-sustaining combustion performance.
文摘In order to improve the wear resistance and high temperature oxidation resistance of titanium and titanium alloy, the high temperature ultra fine ceramic coating containing nano-size nickel particles was prepared by flow coat method on the surface of industrially pure titanium TB1-0. The effects of nano-size nickel particles on the wear resistance and high temperature oxidation resistance of coating substrate system were investigated through oxidation kinetics experiment and wear resistance test. The morphologies of the specimens were examined by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The results show that the high temperature ultra fine ceramic coating has notable protection effect on industrially pure titanium TB1-0 from oxidation. The oxidation and wear resistance properties of the coating can be effectively improved by adding nano-size nickel particles. The oxidative mass gain of the specimen decreases from 11.33 mg·cm-2 to 5.25 mg·cm-2 and the friction coefficient decreases from 1.1 to 0.6 by adding nano-size nickel particles, and the coating containing 10% (mass fraction) nano-size nickel shows the optimum properties.
基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProjects(51679071,51309089)supported by the National Natural Science Foundation of China+2 种基金Project(BK20130846)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2013BAB06B00)supported by the National Key Technology R&D Program,ChinaProject(2015B06014)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties.A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner.This method has strong mathematical properties with respect to orthogonality and rotating invariance.It was used here to characterize and reconstruct particle micromorphology in three-dimensional space.The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area.The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases,and the error can be brought below 5%when the order number reaches 10.This level of precision is sharp enough to distinguish the characteristics of real particles.Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples,and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D.Results show that the higher the spherical harmonic order of reconstructed particles,the lower the initial compression modulus and the larger the strain at peak intensity.However,peak strength shows only a random relationship to spherical harmonic order.Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.