Background Polygalacturonase inhibiting proteins(PGIPs)play a pivotal role in plant defense against plant patho-gens by inhibiting polygalacturonase(PG),an enzyme produced by pathogens to degrade plant cell wall pecti...Background Polygalacturonase inhibiting proteins(PGIPs)play a pivotal role in plant defense against plant patho-gens by inhibiting polygalacturonase(PG),an enzyme produced by pathogens to degrade plant cell wall pectin.PGIPs,also known as leucine-rich repeat pathogenesis-related(PR)proteins,activate the host’s defense response upon interaction with PG,thereby reinforcing the host defense against plant pathogens attacks.In Egyptian or extra-long staple cotton(Gossypium barbadense),the interaction between PGIP and PG is one of the crucial steps in the defense mechanism against major pathogens such as Xanthomonas citri pv.malvacearum and Alternaria mac-rospora,which are responsible for bacterial leaf blight and leaf spot diseases,respectively.Results To unravel the molecular mechanisms underlying these PR proteins,we conducted a comprehensive study involving molecular modeling,protein-protein docking,site-specific double mutation(E169G and F242K),and molec-ular dynamics simulations.Both wild-type and mutated cotton PGIPs were examined in the interaction with the PG enzyme of a bacterial and fungal pathogen.Our findings revealed that changes in conformations of double-mutated residues in the active site of PGIP lead to the inhibition of PG binding.The molecular dynamics simulation studies provide insights into the dynamic behaviour and stability of the PGIP-PG complexes,shedding light on the intricate details of the inhibitory and exhibitory mechanism against the major fungal and bacterial pathogens of G.barbadense,respectively.Conclusions The findings of this study not only enhance our understanding of the molecular interactions between PGs of Xanthomonas citri pv.malvacearum and Alternaria macrospora and PGIP of G.barbadense but also pre-sent a potential strategy for developing the disease-resistant cotton varieties.By variations in the binding affinities of PGs through specific mutations in PGIP,this research offers promising avenues for the development of enhanced resistance to cotton plants against bacterial leaf blight and leaf spot diseases.展开更多
Based on the starch hydrolysis reaction accelerated by microwave irradiation with α-amylase, the circular dichroism (CD) and secondary structure changes of α-amylase under the condition of microwave irradiation an...Based on the starch hydrolysis reaction accelerated by microwave irradiation with α-amylase, the circular dichroism (CD) and secondary structure changes of α-amylase under the condition of microwave irradiation and water bath were studied by circular dichroism spectra. The results showed that, both the peak heights (at 2=193 nm) of the CD spectra of the samples treated by microwave irradiation and water bath reduced. The reduced rate by microwave irradiation ranged from 140% to 220%, while the reduced rate by water bath ranged from 60% to 140%. The peak of the sample treated by microwave irradiation for 60 min disappeared at λ=193 nm, while the sample showed a wake peak by water bath. The peak position by microwave irradiation emerged a blue shift in the range of 5-8 nm at λ=204 nm and λ=220 nm, while it emerged in the range of 3-5 nm by water bath. With time going on, the microwave irradiation and water bath have prompted the secondary structure of α-helix, β-sheet, β-turn and the mutual transformations of random coil, but the trends were different.展开更多
OBJECTIVE The inhibitory effect of active ingredients of Tripterygium wilfordii Hook.F.(TWHF)(celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine)on human carboxylester⁃ase 1(CES1)and CES2 was detect...OBJECTIVE The inhibitory effect of active ingredients of Tripterygium wilfordii Hook.F.(TWHF)(celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine)on human carboxylester⁃ase 1(CES1)and CES2 was detected to investigate the herb-drug interactions(HDIs)of TWHF.METHODS Human liver microsomes catalysed hydrolysis of 2-(2-benzoyl-3-methoxyphenyl)benzothi⁃azole(BMBT)and fluorescein diacetate(FD)were used as the probe reaction to phenotype the activity of CES1 and CES2,respectively.The residual activities of CES1 and CES2 were detected by ultrahigh performance liquid chromatography(UPLC)after intervention with celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine(100μmol·L^(-1)).Kinetics analysis,involving half inhibitory concentra⁃tion(IC_(50)),inhibition type and kinetic parameter(Ki),and in vitro-in vivo extrapolation(IVIVE),was carried out to predict the HDIs between these compounds and CES-metabolizing drugs.Molecular docking was performed to analyze the ligand-enzyme interaction.RESULTS Out of the six main con⁃stituents of TWHF,only celastrol exhibited strong inhibition towards both CES1 and CES2,with the inhibitory rates of 97.45%(P<0.05)and 95.62%(P<0.05),respectively.The IC_(50)was 9.95 and 4.02 mol·L^(-1),respectively,and the types of inhibition were all non-competitive inhibition.Based on the kinetics analysis,the Ki values were calculated to be 5.10 and 10.55μmol·L^(-1)for the inhibition of celastrol on CES1 and CES2,respectively.IVIVE indicated that celastrol might disturb the metabolic hydrolysis of clinical drugs in vivo by inhibiting CES1.Molecular docking results showed that hydrogen bonds and hydrophobic contacts contributed to the interaction of celastrol and CESs.CONCLUSION The inhibitory effect of celastrol on CES1 and CES2 might cause HDIs with clinical drugs hydrolysed by CESs.展开更多
基金CABin grant(F.no.Agril.Edn.4-1/2013-A&P)Indian Council of Agricul-tural Research,Ministry of Agriculture and Farmers’Welfare,Govt.of India and Department of Biotechnology,Govt.of India for BIC project grant(BT/PR40161/BTIS/137/32/2021)。
文摘Background Polygalacturonase inhibiting proteins(PGIPs)play a pivotal role in plant defense against plant patho-gens by inhibiting polygalacturonase(PG),an enzyme produced by pathogens to degrade plant cell wall pectin.PGIPs,also known as leucine-rich repeat pathogenesis-related(PR)proteins,activate the host’s defense response upon interaction with PG,thereby reinforcing the host defense against plant pathogens attacks.In Egyptian or extra-long staple cotton(Gossypium barbadense),the interaction between PGIP and PG is one of the crucial steps in the defense mechanism against major pathogens such as Xanthomonas citri pv.malvacearum and Alternaria mac-rospora,which are responsible for bacterial leaf blight and leaf spot diseases,respectively.Results To unravel the molecular mechanisms underlying these PR proteins,we conducted a comprehensive study involving molecular modeling,protein-protein docking,site-specific double mutation(E169G and F242K),and molec-ular dynamics simulations.Both wild-type and mutated cotton PGIPs were examined in the interaction with the PG enzyme of a bacterial and fungal pathogen.Our findings revealed that changes in conformations of double-mutated residues in the active site of PGIP lead to the inhibition of PG binding.The molecular dynamics simulation studies provide insights into the dynamic behaviour and stability of the PGIP-PG complexes,shedding light on the intricate details of the inhibitory and exhibitory mechanism against the major fungal and bacterial pathogens of G.barbadense,respectively.Conclusions The findings of this study not only enhance our understanding of the molecular interactions between PGs of Xanthomonas citri pv.malvacearum and Alternaria macrospora and PGIP of G.barbadense but also pre-sent a potential strategy for developing the disease-resistant cotton varieties.By variations in the binding affinities of PGs through specific mutations in PGIP,this research offers promising avenues for the development of enhanced resistance to cotton plants against bacterial leaf blight and leaf spot diseases.
基金Project(08A080) supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘Based on the starch hydrolysis reaction accelerated by microwave irradiation with α-amylase, the circular dichroism (CD) and secondary structure changes of α-amylase under the condition of microwave irradiation and water bath were studied by circular dichroism spectra. The results showed that, both the peak heights (at 2=193 nm) of the CD spectra of the samples treated by microwave irradiation and water bath reduced. The reduced rate by microwave irradiation ranged from 140% to 220%, while the reduced rate by water bath ranged from 60% to 140%. The peak of the sample treated by microwave irradiation for 60 min disappeared at λ=193 nm, while the sample showed a wake peak by water bath. The peak position by microwave irradiation emerged a blue shift in the range of 5-8 nm at λ=204 nm and λ=220 nm, while it emerged in the range of 3-5 nm by water bath. With time going on, the microwave irradiation and water bath have prompted the secondary structure of α-helix, β-sheet, β-turn and the mutual transformations of random coil, but the trends were different.
文摘OBJECTIVE The inhibitory effect of active ingredients of Tripterygium wilfordii Hook.F.(TWHF)(celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine)on human carboxylester⁃ase 1(CES1)and CES2 was detected to investigate the herb-drug interactions(HDIs)of TWHF.METHODS Human liver microsomes catalysed hydrolysis of 2-(2-benzoyl-3-methoxyphenyl)benzothi⁃azole(BMBT)and fluorescein diacetate(FD)were used as the probe reaction to phenotype the activity of CES1 and CES2,respectively.The residual activities of CES1 and CES2 were detected by ultrahigh performance liquid chromatography(UPLC)after intervention with celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine(100μmol·L^(-1)).Kinetics analysis,involving half inhibitory concentra⁃tion(IC_(50)),inhibition type and kinetic parameter(Ki),and in vitro-in vivo extrapolation(IVIVE),was carried out to predict the HDIs between these compounds and CES-metabolizing drugs.Molecular docking was performed to analyze the ligand-enzyme interaction.RESULTS Out of the six main con⁃stituents of TWHF,only celastrol exhibited strong inhibition towards both CES1 and CES2,with the inhibitory rates of 97.45%(P<0.05)and 95.62%(P<0.05),respectively.The IC_(50)was 9.95 and 4.02 mol·L^(-1),respectively,and the types of inhibition were all non-competitive inhibition.Based on the kinetics analysis,the Ki values were calculated to be 5.10 and 10.55μmol·L^(-1)for the inhibition of celastrol on CES1 and CES2,respectively.IVIVE indicated that celastrol might disturb the metabolic hydrolysis of clinical drugs in vivo by inhibiting CES1.Molecular docking results showed that hydrogen bonds and hydrophobic contacts contributed to the interaction of celastrol and CESs.CONCLUSION The inhibitory effect of celastrol on CES1 and CES2 might cause HDIs with clinical drugs hydrolysed by CESs.