期刊文献+
共找到3,205篇文章
< 1 2 161 >
每页显示 20 50 100
Outliers Mining in Time Series Data Sets 被引量:3
1
作者 Zheng Binxiang,Du Xiuhua & Xi Yugeng Institute of Automation, Shanghai Jiaotong University,Shanghai 200030,P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第1期93-97,共5页
In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be ma... In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be mapped as the points in k -dimensional space.For these points, a cluster-based algorithm is developed to mine the outliers from these points.The algorithm first partitions the input points into disjoint clusters and then prunes the clusters,through judgment that can not contain outliers.Our algorithm has been run in the electrical load time series of one steel enterprise and proved to be effective. 展开更多
关键词 Data mining Time series Outlier mining.
在线阅读 下载PDF
PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets
2
作者 JIANG Haipeng WU Guoqing +3 位作者 SUN Mengdan LI Feng SUN Yunfei FANG Wei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期965-975,共11页
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform... Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach. 展开更多
关键词 high utility itemset mining(HUIM) graphics process-ing unit(GPU)parallel genetic algorithm(GA) mining perfor-mance
在线阅读 下载PDF
基于TimeSeries-Markov模型的煤矿瓦斯事故起数预测 被引量:8
3
作者 王玉丽 袁梅 +3 位作者 李闯 许石青 杨萌萌 徐林 《中国矿业》 北大核心 2017年第12期179-183,共5页
本文以2001~2016年我国煤矿瓦斯事故起数为基础,利用时间序列预测模型及改进马尔科夫预测模型分别预测了2001~2010年、2001~2011年、…及2001~2015年中各年瓦斯事故起数,并计算了其相对误差。其中,TS分别计算的上述六组值的相对误差平... 本文以2001~2016年我国煤矿瓦斯事故起数为基础,利用时间序列预测模型及改进马尔科夫预测模型分别预测了2001~2010年、2001~2011年、…及2001~2015年中各年瓦斯事故起数,并计算了其相对误差。其中,TS分别计算的上述六组值的相对误差平均值在18.72%~23.4%之间,而TSM计算的对应值为5.79%~7.09%,且TSM的预测值的波动趋势更符合真实情况。将上述两种模型分别预测后计算的2011~2016各年瓦斯事故发生起数的相对误差进行线性拟合,发现TSM的预测精度更高。因此,用TSM预测煤矿瓦斯事故起数比用TS预测更可靠,这也间接反映了TSM比TS更多地考虑了因素的近期状况对预测值的影响。最后,用此法预测了2017~2020年我国煤矿瓦斯事故起数,其依次为6起、7起、6起及4起。 展开更多
关键词 时间序列预测模型 马尔科夫预测模型 煤矿 瓦斯事故
在线阅读 下载PDF
Convolutional neural networks for time series classification 被引量:52
4
作者 Bendong Zhao Huanzhang Lu +2 位作者 Shangfeng Chen Junliang Liu Dongya Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期162-169,共8页
Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of ... Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of time series data: high dimensionality, large in data size and updating continuously. The deep learning techniques are explored to improve the performance of traditional feature-based approaches. Specifically, a novel convolutional neural network (CNN) framework is proposed for time series classification. Different from other feature-based classification approaches, CNN can discover and extract the suitable internal structure to generate deep features of the input time series automatically by using convolution and pooling operations. Two groups of experiments are conducted on simulated data sets and eight groups of experiments are conducted on real-world data sets from different application domains. The final experimental results show that the proposed method outperforms state-of-the-art methods for time series classification in terms of the classification accuracy and noise tolerance. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 CONVOLUTION Data mining Neural networks Time series Virtual reality
在线阅读 下载PDF
Selective maintenance problem for series–parallel system under economic dependence 被引量:4
5
作者 Qing-zheng XU Le-meng GUO +1 位作者 He-ping SHI Na WANG 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第5期388-400,共13页
In view of the high complexity of the objective world, an economic dependence between subsystems(paired and unpaired) is proposed, and then the maintenance cost and time under different economic dependences are formul... In view of the high complexity of the objective world, an economic dependence between subsystems(paired and unpaired) is proposed, and then the maintenance cost and time under different economic dependences are formulated in a simple and consistent manner. Selective maintenance problem under economic dependence(EDSMP) is presented based on a series–parallel system in this paper. A case study shows that the system reliability is promoted to a certain extent, which can validate the validity of the EDSMP model. The influence of the ratio of set-up cost on system performance is mainly discussed under different economic dependences. Several existing improvements of classical exhaust algorithm are further modified to solve a large sized EDSMP rapidly. Experimental results illustrate that these improvements can reduce CPU time significantly.Furthermore the contribution of each improvement is defined here, and then their contributions are compared thoroughly. 展开更多
关键词 Selective maintenance Economic dependence series–parallel system Exhaust algorithm
在线阅读 下载PDF
Optimal control of cobalt crust seabedmining parameters based on simulated annealing genetic algorithm 被引量:2
6
作者 夏毅敏 张刚强 +2 位作者 聂四军 卜英勇 张振华 《Journal of Central South University》 SCIE EI CAS 2011年第3期650-657,共8页
Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting hea... Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn. 展开更多
关键词 cobalt crust mining parameter specific energy consumption simulated annealing genetic algorithm
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
7
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy C-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
Using Data Mining to Find Patterns in Ant Colony Algorithm Solutions to the Travelling Salesman Problem
8
作者 阎世梁 王银玲 《现代电子技术》 2007年第5期117-119,共3页
Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by ... Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation. 展开更多
关键词 数据挖掘 数据管理系统 数据库 数据分析
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型 被引量:5
9
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
基于机器学习的煤系地层TBM掘进巷道围岩强度预测 被引量:1
10
作者 丁自伟 高成登 +6 位作者 景博宇 黄兴 刘滨 胡阳 桑昊旻 徐彬 秦立学 《西安科技大学学报》 北大核心 2025年第1期49-60,共12页
为研究全断面掘进机(TBM)掘进参数与煤系地层岩体力学参数之间的互馈关系,准确、实时预测巷道围岩强度特征,基于TBM掘进过程中的现场监测,通过岩-机互馈关系分析,确定模型的输入特征参数,并建立了对应的数据库;将梯度提升决策树(GBDT)... 为研究全断面掘进机(TBM)掘进参数与煤系地层岩体力学参数之间的互馈关系,准确、实时预测巷道围岩强度特征,基于TBM掘进过程中的现场监测,通过岩-机互馈关系分析,确定模型的输入特征参数,并建立了对应的数据库;将梯度提升决策树(GBDT)、随机森林(RF)、支持向量回归(SVR)3种机器学习算法作为基学习器,线性回归(LR)算法作为元学习器,提出了一种基于Stacking集成算法的预测模型,并对比分析了Stacking集成算法与单一机器学习算法模型的预测性能。结果表明:二值判别与箱线图可有效对原始数据进行预处理;模型的主要输入特征参数为刀盘推力F、刀盘扭矩T、贯入度FPI、刀盘转速RPM、刀盘振动加速度A;Stacking模型在测试集上的拟合优度可达0.976,而均方误差、平均绝对误差、平均绝对百分误差分别仅有0.031,0.148和0.092,与其他3种模型相比,其拟合优度最高,误差指标数值最小,集成模型具有更高的预测精度,能够有效地预测煤矿TBM掘进巷道围岩点荷载强度。研究验证了Stacking模型的准确性,可为煤矿TBM掘进参数控制和巷道支护参数调整提供科学的参考依据。 展开更多
关键词 煤矿全断面掘进机 TBM掘进参数 Stacking集成算法 数据预处理 围岩强度预测
在线阅读 下载PDF
矿井多人员定位轨迹的预警分类方法研究 被引量:1
11
作者 蔡安江 徐海涛 +1 位作者 程东波 刘锋伟 《金属矿山》 北大核心 2025年第1期243-249,共7页
为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时... 为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时间、求救信号等特征参数作为UWB人员定位轨迹预警分类模型的输入指标,以人员的预警行为类别作为输出指标,对预警分类模型进行拟合训练,基于人员4级违规预警机制与专家建议设置预警阈值;最后采用随机森林算法对多人员UWB定位轨迹数据进行人员行为预警识别和分类。研究表明:该方法能够对区域人员作业超员、工作超时、作业求救、定位轨迹缺失和作业越界等行为进行有效预警并准确分类,能够消除隐患,提高矿山人员管理效率和生产作业的安全性。 展开更多
关键词 矿井定位 多人员 预警分类 UWB定位轨迹数据 随机森林算法
在线阅读 下载PDF
基于改进A^(*)算法的矿用巡检机器人路径规划
12
作者 张辉 苏国用 +2 位作者 赵东洋 杨宇豪 何凯 《太原理工大学学报》 北大核心 2025年第3期559-566,共8页
【目的】针对煤矿井下环境非结构化、局部可通行区域窄以及传统A^(*)算法规划路径存在搜索时间长、搜索节点多、路径冗余节点多、路径平滑度较差等问题,提出一种基于改进A^(*)算法的矿用巡检机器人路径规划算法。【方法】首先在传统A^(*... 【目的】针对煤矿井下环境非结构化、局部可通行区域窄以及传统A^(*)算法规划路径存在搜索时间长、搜索节点多、路径冗余节点多、路径平滑度较差等问题,提出一种基于改进A^(*)算法的矿用巡检机器人路径规划算法。【方法】首先在传统A^(*)算法的启发函数中引入预估消耗的指数函数和障碍物覆盖率之和,以提高搜索效率,缩短搜索时间;其次改进传统8邻域搜索为9邻域搜索,从而避免无用搜索,减少搜索节点数量;然后通过Floyd算法剔除路径中的冗余节点;最后采用改进3阶贝塞尔曲线完成路径平滑任务。【结果】结果表明:相较于传统A^(*)算法,在特定的20×20、30×30和40×40栅格地图下,改进A^(*)算法使得搜索时间分别缩短44.1%、63.8%和84.8%,搜索节点分别减少31.6%、47.9%和71%;路径平滑算法能够减少路径节点,改善路径平滑度,更适用于矿用巡检机器人的路径规划。 展开更多
关键词 矿用巡检机器人 路径规划 改进A^(*)算法 FLOYD算法 贝塞尔曲线
在线阅读 下载PDF
基于WOA-WNN-LSTM算法的红外CO痕量气体压力补偿与时序浓度分析
13
作者 田富超 张海龙 +3 位作者 苏嘉豪 梁运涛 王琳 王泽文 《光谱学与光谱分析》 北大核心 2025年第4期994-1007,共14页
红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,... 红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,WOA)和小波神经网络(wavelet neural network,WNN)相结合的压力补偿算法,并结合长短期记忆法(long short-term memory,LSTM)对补偿后的数据进行预测。通过搭建工业环境气体压力补偿实验平台,使用高精度配气仪配置100~900 ppm标准CO气体,在80~120 kPa范围内进行数百组重复实验,发现CO气体传感器在负压条件下测量值小于标气浓度,正压条件下测量值大于标气浓度,并随压力变化呈线性关系,绝对误差最高为86 ppm。将传感器数据使用小波神经网络进行误差降低,初步补偿后的CO误差降至26 ppm,但由于参数可移植性较差,个别数据误差较大。进一步使用鲸鱼优化算法优化小波神经网络的参数后,补偿效果显著提升,传感器测量值与真值之差保持在0.004%以内且数据稳定。最终结合LSTM进行气体浓度预测,预测值与实际值之间的均方根误差(RMSE)均小于0.1,平均绝对误差(MAE)均小于0.020,实验结果表明,WOA-WNN-LSTM算法能够有效提高红外气体传感器的测量精度,成功消除环境压力对测量结果的影响,为工业环境气体检测提供了更为可靠和精准的解决方案。 展开更多
关键词 红外光谱分析 环境压力补偿 鲸鱼优化算法 小波神经网络 时序浓度预测
在线阅读 下载PDF
复杂矿井通风网络快速等效简化算法
14
作者 贾进章 尚文天 +1 位作者 刘剑 邓立军 《煤炭学报》 北大核心 2025年第1期421-431,共11页
矿井通风网络等效简化技术是分析通风网络的有效工具。然而,随着矿井通风网络中分支数量的增加,通风网络的复杂性也在不断增加,传统的等效简化算法难以保持精度和计算速度。针对这些问题,提出一种复杂矿井通风网络的快速等效简化算法。... 矿井通风网络等效简化技术是分析通风网络的有效工具。然而,随着矿井通风网络中分支数量的增加,通风网络的复杂性也在不断增加,传统的等效简化算法难以保持精度和计算速度。针对这些问题,提出一种复杂矿井通风网络的快速等效简化算法。该算法通过图论中的强连通块算法快速检测网络中的单向回路,并通过改进等效简化子网的判定公式,避免了对单向回路的错误等效简化;通过节点的出入度规律与分支的流出流入节点提出了局部串并联子网等效简化策略,从而实现对网络中不包含角联结构的串联和并联等效子网的快速等效简化;基于等效子网节点对出入分支的风量平衡规律,提出对网络中需进行深度搜索的节点对集合的优化策略,通过减少不必要的节点对深度搜索,来提高简化过程的精度和效率。首先通过具有100个分支与71个节点构成的矿井通风网络展示了所提算法的具体简化过程,验证了其有效性。然后通过对10个真实矿井通风网络的实证测试表明,所提的2种优化策略都提升了传统算法的性能,对于100~1001条分支的实际矿井通风网络,与传统算法相比,所提算法在增加等效简化完全性的同时,将以秒为单位的网络等效简化时间数量级自(10,10^(3))降低至(10^(-2),1)。 展开更多
关键词 矿井通风网络 等效简化 时间复杂度 单向回路 局部串并联子网 节点出入分支风量
在线阅读 下载PDF
考虑设备突发故障的露天矿无人矿卡集群调度优化
15
作者 顾清华 王雪晴 +2 位作者 王丹 张朋朋 王宇 《矿业科学学报》 北大核心 2025年第2期305-315,共11页
为减少露天矿开采设备突发故障的不确定性和随机性影响,以露天煤矿运输系统中的装载点和卸载点的生产设备为研究对象,提出考虑设备突发故障的露天矿无人矿卡集群调度模型。首先,以最小化卡车运输成本、卡车总空闲时间以及最大化矿石运... 为减少露天矿开采设备突发故障的不确定性和随机性影响,以露天煤矿运输系统中的装载点和卸载点的生产设备为研究对象,提出考虑设备突发故障的露天矿无人矿卡集群调度模型。首先,以最小化卡车运输成本、卡车总空闲时间以及最大化矿石运量为目标,建立初始调度模型;其次,考虑设备突发故障,构建与初始调度方案目标函数偏差最小的重新调度模型,进而提出一种基于代理模型辅助的自适应选择多目标进化算法,用克里金(Kriging)代理模型代替卡车调度仿真过程;最后,以国内某露天矿的相关数据进行仿真应用。结果表明:当运输系统受到设备突发故障干扰时,该方法能给出卡车总空闲时间更短以及矿石运量更多的调度优化调整方案。 展开更多
关键词 设备突发故障 多目标进化算法 露天煤矿 重新调度
在线阅读 下载PDF
一种基于CSO-LSTM的新能源发电功率预测方法
16
作者 顾慧杰 方文崇 +3 位作者 周志烽 朱文 马光 李映辰 《计算机科学》 北大核心 2025年第S1期747-757,共11页
随着新能源发电技术的快速发展与广泛普及,该类技术已经成为电力系统中关键的一环。其中,对新能源发电功率的准确预测对于电力系统的合理规划有着重要的意义。然而,现有的新能源发电功率预测方法仍存在以下挑战:1)基于深度神经网络的预... 随着新能源发电技术的快速发展与广泛普及,该类技术已经成为电力系统中关键的一环。其中,对新能源发电功率的准确预测对于电力系统的合理规划有着重要的意义。然而,现有的新能源发电功率预测方法仍存在以下挑战:1)基于深度神经网络的预测模型的超参数对模型的预测性能有着重要的影响,而目前大多数算法仍采用人工确定的方法为超参赋值;2)现有的预测模型难以高效地挖掘时序数据中的长期依赖关系,从而影响预测精度。针对上述问题,本文提出了一种基于CSO-LSTM(Competitive Swarm Optimizer-Long Short-Term Memory)的新能源发电功率预测方法,旨在利用一种两阶段的模型综合地提升预测性能。首先,在模型的第一阶段提出了一种基于竞争群优化的LSTM超参数优化算法,利用竞争群优化算法良好的探索能力和全局优化能力,实现预测模型超参数的自适应调整。然后,在模型的第二阶段设计了一种基于组合多门控机制的LSTM模型,该方法结合自注意力门控机制和组合多个门控网络用于挖掘新能源发电时序数据中的长期依赖关系,从而进一步地适应不同时间尺度下的新能源生成模式。最后,在2个真实数据集和1个仿真数据集上与4个先进的预测方法进行了对比实验,实验结果验证了提出的CSO-LSTM模型的有效性和执行效率。 展开更多
关键词 竞争群优化 长短期记忆神经网络 新能源发电功率预测 多尺度时序数据挖掘 参数优化
在线阅读 下载PDF
融合时序InSAR与ESMD的高填方膨胀土机场隐患识别与形变监测
17
作者 张双成 李思洁子 +2 位作者 任志鹏 司锦钊 胡兴群 《测绘通报》 北大核心 2025年第3期39-45,共7页
本文首先运用小基线集时序InSAR技术(SBAS-InSAR)识别安康膨胀土机场的形变隐患区,获取隐患区特征点的长时间序列;然后基于ESMD算法对形变时间序列进行分解,提取季节性物理信号,突出地表形变信号,获取时间序列季节性波段周期和形变异常... 本文首先运用小基线集时序InSAR技术(SBAS-InSAR)识别安康膨胀土机场的形变隐患区,获取隐患区特征点的长时间序列;然后基于ESMD算法对形变时间序列进行分解,提取季节性物理信号,突出地表形变信号,获取时间序列季节性波段周期和形变异常发生的频率和时间;最后结合环境负载中的降水、温度因素对形变因素进行分析。研究结果表明:①机场地表形变主要发生在膨胀土填方区域,机场高填方边坡的形变尤为明显;②膨胀土形变受环境因素表现为季节性波动,且在夏季易发生不均匀沉降。研究结果提供了有关膨胀土易发生周期性形变机制的重要线索,并对监测膨胀土地质条件下的交通基础设施具有一定参考意义。 展开更多
关键词 膨胀土机场 时序InSAR ESMD算法 隐患识别
在线阅读 下载PDF
利用模糊关联规则挖掘和遗传算法的工业产品设计优化方法
18
作者 张晴 李丛 高广银 《西南大学学报(自然科学版)》 北大核心 2025年第7期207-218,共12页
在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结... 在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结合了多层人工智能技术:大数据分析、基于递归关联规则的模糊推理系统(RAFIS)以及Mamdani模糊推理系统。所提出的方法通过将模糊关联规则挖掘(FARM)和遗传算法(GA)纳入RAFIS,以缩小客户属性和设计参数之间的差距。首先,在FFE阶段,组织数据收集和管理,然后将数据集输入FARM和GA以获取最佳模糊规则和隶属函数。随后,利用这些结果建立用于定制产品设计特征的Mamdani模糊推理系统。通过优化Mamdani推理系统中的参数(包括隶属函数的类型、分区和范围),实现产品定制设计。实验以电动滑板车为例进行应用分析,并采用模糊综合评价方法评估设计方案。结果表明两种设计方案均获得较高满意度,验证了该方法的有效性和可行性。 展开更多
关键词 人工智能 产品设计 模糊关联规则挖掘 遗传算法 大数据分析
在线阅读 下载PDF
基于机器学习的简支梁式渡槽结构地震响应与易损性分析
19
作者 韦芳芳 林澳庆 +2 位作者 赵有正 王永泉 陈卓然 《河海大学学报(自然科学版)》 北大核心 2025年第3期101-108,共8页
为提高渡槽结构地震响应预测的速度和精度,以界河渡槽为研究对象,采用Midas Civil-2021构建有限元模型,在验证有限元模型可靠性的基础上,基于该模型获取样本数据,利用长短期记忆(LSTM)算法和时序转换(TSTF)算法构建机器学习模型来预测... 为提高渡槽结构地震响应预测的速度和精度,以界河渡槽为研究对象,采用Midas Civil-2021构建有限元模型,在验证有限元模型可靠性的基础上,基于该模型获取样本数据,利用长短期记忆(LSTM)算法和时序转换(TSTF)算法构建机器学习模型来预测渡槽非线性地震响应,并通过调整时间窗口大小和采样周期使预测结果达到最佳。对槽墩顶点位移响应的预测结果表明,LSTM模型和TSTF模型平均准确率分别为76.22%和88.30%;与有限元模型的预测速度相比,LSTM模型和TSTF模型分别提升了128.54%和47.90%。对渡槽结构易损性分析结果表明,槽墩的损伤超越概率随着水位上升而逐渐增大。 展开更多
关键词 简支梁式渡槽 地震响应预测 机器学习 长短期记忆算法 时序转换算法
在线阅读 下载PDF
煤矿巷道掘进锚索自动输送系统设计与仿真
20
作者 马宏伟 喻祖坤 +4 位作者 王川伟 崔闻达 成家帅 郭逸风 苏浩 《西安科技大学学报》 北大核心 2025年第3期429-438,共10页
针对煤矿巷道掘进中锚索支护过程自动化程度低、劳动强度大等问题,提出了一种煤矿巷道掘进锚索输送系统。通过对锚索输送系统的空间布局进行参数化建模,以机械臂输送过程中锚索的弯曲半径和悬空长度为指标,利用多目标粒子群算法(MOPSO)... 针对煤矿巷道掘进中锚索支护过程自动化程度低、劳动强度大等问题,提出了一种煤矿巷道掘进锚索输送系统。通过对锚索输送系统的空间布局进行参数化建模,以机械臂输送过程中锚索的弯曲半径和悬空长度为指标,利用多目标粒子群算法(MOPSO),求解得出了锚索输送系统的最优空间布局;结合锚索输送和安装需求,设计锚索输送装置的总体结构,利用改进D-H法建立了输送装置的运动学模型并分析了工作空间;分析锚索与其输送装置之间的相互作用机理,建立锚索参数、锚索弯曲弹性力和弯管参数关系的力学模型,以及锚索输送装置的虚拟样机模型,完成了锚索输送过程动力学仿真。结果表明:锚索输送装置能够满足6000 mm×4400 mm(宽×高)巷道的支护要求;当锚索参数确定时,锚索驱动力与弯管曲率半径平方项相关,而与锚索和弯管摩擦系数呈线性关系,增大弯管曲率半径可以显著减小所需最大驱动力;为使机械臂牵引的负载最小,弯管曲率半径的取值应使得弯管入口与锚索库出口高度接近;考虑锚索输送力得到的最优空间布局为弯管曲率半径1.5 m,端面转角90°,输送装置与锚索库水平距离1.51 m。研究结果为煤矿巷道锚索支护效率的提高,锚索支护的自动化和智能化的实现提供了参考依据。 展开更多
关键词 煤矿巷道掘进 锚索自动输送装置 工作空间 虚拟样机 粒子群算法
在线阅读 下载PDF
上一页 1 2 161 下一页 到第
使用帮助 返回顶部