In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution s...In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution set of generalized equilibrium problems and of the fixed point set of strictly pseudocontractive mappings.展开更多
In this article, we first introduce an iterative method based on the hybrid viscos- ity approximation method and the hybrid steepest-descent method for finding a fixed point of a Lipschitz pseudocontractive mapping (...In this article, we first introduce an iterative method based on the hybrid viscos- ity approximation method and the hybrid steepest-descent method for finding a fixed point of a Lipschitz pseudocontractive mapping (assuming existence) and prove that our proposed scheme has strong convergence under some mild conditions imposed on algorithm parameters in real Hilbert spaces. Next, we introduce a new iterative method for a solution of a non- linear integral equation of Hammerstein type and obtain strong convergence in real Hilbert spaces. Our results presented in this article generalize and extend the corresponding results on Lipschitz pseudocontractive mapping and nonlinear integral equation of Hammerstein type reported by some authors recently. We compare our iterative scheme numerically with other iterative scheme for solving non-linear integral equation of Hammerstein type to verify the efficiency and implementation of our new method.展开更多
With an inequality and some analysis techniques,iterative approximation of fixed points for uniformly continuous and strongly pseudocontractive mappings in smooth Banach spaces is studied,and the recent corresponding ...With an inequality and some analysis techniques,iterative approximation of fixed points for uniformly continuous and strongly pseudocontractive mappings in smooth Banach spaces is studied,and the recent corresponding results of Chidume are improved.展开更多
In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under ...In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.展开更多
基金supported by National Research Foundation of Korea Grantfunded by the Korean Government (2009-0076898)
文摘In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution set of generalized equilibrium problems and of the fixed point set of strictly pseudocontractive mappings.
文摘In this article, we first introduce an iterative method based on the hybrid viscos- ity approximation method and the hybrid steepest-descent method for finding a fixed point of a Lipschitz pseudocontractive mapping (assuming existence) and prove that our proposed scheme has strong convergence under some mild conditions imposed on algorithm parameters in real Hilbert spaces. Next, we introduce a new iterative method for a solution of a non- linear integral equation of Hammerstein type and obtain strong convergence in real Hilbert spaces. Our results presented in this article generalize and extend the corresponding results on Lipschitz pseudocontractive mapping and nonlinear integral equation of Hammerstein type reported by some authors recently. We compare our iterative scheme numerically with other iterative scheme for solving non-linear integral equation of Hammerstein type to verify the efficiency and implementation of our new method.
文摘With an inequality and some analysis techniques,iterative approximation of fixed points for uniformly continuous and strongly pseudocontractive mappings in smooth Banach spaces is studied,and the recent corresponding results of Chidume are improved.
基金Foundation item: Supported by the Natural Science Foundation of China(10871216) Supported by the Natural Science Foundation Project of CQ CSTC(2008BB0346, 2007BB0441) Supported by the Excellent Young Teachers Program of Chongqing Jiaotong University(EYT08-016) Acknowledgement The author would like to thank the anonymous referee for the valuable remarks that helped considerably to correct and to improve the presentation.
文摘In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.