期刊文献+
共找到246篇文章
< 1 2 13 >
每页显示 20 50 100
双通道小波核-卷积神经网络轧机设备轴承诊断方法
1
作者 时培明 肖立峰 +2 位作者 许学方 何俊杰 彭荣荣 《机械科学与技术》 北大核心 2025年第2期335-344,共10页
轧机设备运行过程中产生的振动信号和声音信号包含丰富的状况信息,而使用单类传感器采集信号难以捕获轧机的全面信息。针对上述问题,提出一种基于双通道异源信息融合的小波核-卷积神经网络算法。首先,将采集的振动信号转换成二维小波时... 轧机设备运行过程中产生的振动信号和声音信号包含丰富的状况信息,而使用单类传感器采集信号难以捕获轧机的全面信息。针对上述问题,提出一种基于双通道异源信息融合的小波核-卷积神经网络算法。首先,将采集的振动信号转换成二维小波时频图作为二维卷积神经网络通道的输入;再设计一种小波核网络Wavelet kernel network (WKN)作为一维通道对声音信号进行处理;最后,将各通道提取的特征向量在汇聚层进行拼接,信息融合后实现对轧机设备的轴承状况诊断。为了验证该算法的有效性,搭建轧机状况实验平台。实验结果表明,在变工况下,双通道小波核-卷积神经融合网络对轧机轴承故障诊断准确率可达99%。 展开更多
关键词 故障诊断 轧机轴承 双通道卷积神经网络 小波卷积核
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
2
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合核函数 支持向量机及其变体 超参数优化
在线阅读 下载PDF
基于SSWT和SE改进LSKNet的航空发动机中介轴承智能诊断研究
3
作者 郑煜 赵俊豪 +3 位作者 王凯 张弛 王英 齐加晖 《机电工程》 北大核心 2025年第11期2181-2188,共8页
针对航空发动机中介轴承振动信号在强噪声和多尺度耦合特性下故障特征提取困难的问题,提出了一种基于同步压缩小波变换(SSWT)与改进的大的可选择卷积核网络(LSKNet)的智能诊断方法。首先,采用了SSWT对振动信号进行了时频能量重分配,生... 针对航空发动机中介轴承振动信号在强噪声和多尺度耦合特性下故障特征提取困难的问题,提出了一种基于同步压缩小波变换(SSWT)与改进的大的可选择卷积核网络(LSKNet)的智能诊断方法。首先,采用了SSWT对振动信号进行了时频能量重分配,生成了高分辨率时频图像,克服了传统连续小波变换(CWT)因海森堡不确定性原理导致的时频分辨率不足和模态混叠问题;然后,设计了LSKNet主干中嵌入通道注意力模块的改进LSKNet,构建了动态“压缩-激励”(SE)机制,强化了多尺度特征交互,提升了复杂故障模式的区分能力;最后,进行了基于哈尔滨工业大学实测中介轴承数据集的实验验证,涵盖了不同转速、故障类型及故障程度的中介轴承工况,并开展了消融实验与样本对照分析;实验中,以1024点长度切片划分样本,采用Adam优化器,初始学习率为3.000×10-4,训练50轮后收敛。研究结果表明:改进模型在测试集的准确率达99.88%;消融实验进一步验证了SE模块的贡献;SSWT预处理相较CWT、S变换(ST)等方法,在训练效率和分类性能上均表现最优。该方法在强噪声环境下针对多工况轴承故障诊断具有鲁棒性,为航空发动机关键部件的智能诊断提供了有效解决方案。 展开更多
关键词 航空发动机 中介轴承 同步压缩小波变换 压缩-激励 大的可选择卷积核网络 连续小波变换 S变换
在线阅读 下载PDF
基于光照度适应与小波融合的水下图像增强
4
作者 张贵平 何志琴 《电子测量技术》 北大核心 2025年第12期146-155,共10页
水下成像由于光的被吸收和散射现象,导致水下图像往往存在细节丢失、颜色偏差和光照度损失、过曝等问题。针对上述问题,本文提出了一种基于光照度适应与小波融合的增强算法。利用优化对数变换提升图像整体亮度,并通过高斯核函数卷积运... 水下成像由于光的被吸收和散射现象,导致水下图像往往存在细节丢失、颜色偏差和光照度损失、过曝等问题。针对上述问题,本文提出了一种基于光照度适应与小波融合的增强算法。利用优化对数变换提升图像整体亮度,并通过高斯核函数卷积运算生成适应背景光照度的增强图像,再与水下图像通过小波多尺度融合以增强水下图像的低照度区域,同时压制过曝区域。其次,通过计算颜色通道的均值,以调整融合后图像的对比度和色彩饱和度。最后,通过小波迭代融合其Gamma矫正和锐化后的图像得到最终水下增强图像。实验结果表明,本文算法能够有效增强图像细节、恢复图像色差;图像的IE、UCIQE和UIQM的均值较原始图像分别提高了7.5%、36.6%和199.8%。 展开更多
关键词 水下图像增强 光照度适应 高斯核函数卷积运算 高斯滤波 小波迭代融合
在线阅读 下载PDF
核电多回路系统多源传感器异常检测的AAKR-SPRT方法
5
作者 谢述帅 成玮 +3 位作者 张乐 聂泽琳 陈雪峰 李芸 《振动.测试与诊断》 北大核心 2025年第2期233-239,407,408,共9页
针对核电多回路耦合系统在升功率运行中异常传感器检测困难、检测延时及检测精度低等问题,提出了一种自联想核回归模型(auto-associative kernel regression,简称AAKR)与修正序贯概率比检验(sequential probability ratio test,简称SPRT... 针对核电多回路耦合系统在升功率运行中异常传感器检测困难、检测延时及检测精度低等问题,提出了一种自联想核回归模型(auto-associative kernel regression,简称AAKR)与修正序贯概率比检验(sequential probability ratio test,简称SPRT)相结合的方法。首先,利用小波软阈值降噪方法对监测数据预处理,获取高质量的多源传感器解调信号;其次,采用AAKR构造传感器正常运行数据的估计值,并获取多源传感器测量值与估计值之间的残差;然后,运用滑动时间窗获取不同阶段残差向量的均值和方差,设计一种SPRT检测规则对传感器残差进行异常检测;最后,用核电一、二回路耦合系统模拟机实验数据进行方法验证与性能分析。结果表明,所提传感器异常检测方法的准确率达到99.52%,异常检测延时降低了81.73%,可有效提高现有核电厂传感器异常检测的稳定性。 展开更多
关键词 核电系统 传感器异常检测 自联想核回归 序贯概率比检验 小波阈值降噪
在线阅读 下载PDF
基于GASF-BMKELM的滚动轴承故障诊断方法
6
作者 杨锡发 王林军 +3 位作者 邹腾枭 吴振雄 李响 陈保家 《三峡大学学报(自然科学版)》 北大核心 2025年第4期96-103,共8页
针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning m... 针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning machine,BMKELM)的故障诊断方法.首先,应用小波包节点对数能量与格拉姆角和场(GASF)将原始振动信号变换为小波包对数能量图特征;其次,使用多项式核函数与径向基核函数加权组合构建多核极限学习机(multi-kernel extreme learning machine,MKELM),同时,利用贝叶斯优化算法优化多核极限学习机的参数来提升诊断模型的故障识别能力;最后,以小波包对数能量图特征作为输入,再使用BMKELM模型完成故障特征识别与分类.通过两个数据集进行验证分析,实验结果表明,所提方法的准确率分别为99.39%和98.89%,具有较高的故障识别率和稳定性. 展开更多
关键词 滚动轴承 格拉姆角和场 小波包对数能量图 多核极限学习机 贝叶斯优化算法 故障诊断
在线阅读 下载PDF
改进KPCA结合多目标蜻蜓算法优化BP神经网络的联合收割机故障诊断
7
作者 孟桐 雷鸣 +2 位作者 宋文广 王丹丹 黄梦可 《机电工程》 北大核心 2025年第7期1258-1267,共10页
针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性... 针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性,能够有效捕捉收割机的瞬态变化与局部异常,从而提取出了不同工况下的主要成分,降低了数据维度,减少了冗余信息;其次,针对传统蜻蜓算法的局限性,引入了自适应变异策略、非线性惯性权重及动态收敛因子,构建了多目标蜻蜓算法,对Schaffer、Michalewicz和Rastrigin函数进行了求解,验证了MTDA能显著提升全局与局部搜索平衡能力;最后,利用MTDA对BP神经网络的权值和阈值进行了优化,构建了MTDA-BP综合故障诊断模型,将模型应用于联合收割机的故障诊断中,通过实验验证了其有效性。研究结果表明:故障诊断平均精度达到96.7%,通过与当前主流方法的实验对比分析,采用Micro-average ROC进行了模型评价,结果显示该模型的曲线下面积(AUC)为0.967。实验结果充分证明了该模型在检测精确度与泛化性方面均具有显著优势,该研究也为解决智能农业机械中的诊断提供了一种有效的方法。 展开更多
关键词 核主成分分析 MORLET小波 多目标蜻蜓算法 反向传播神经网络 联合收割机 故障诊断
在线阅读 下载PDF
基于小波核极限学习机的烟叶烘烤过程的智能识别 被引量:5
8
作者 邢玉清 樊彩霞 +2 位作者 豆根生 宋朝鹏 吴莉莉 《中国烟草学报》 CAS CSCD 北大核心 2024年第1期55-62,共8页
烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷... 烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷边、小打筒、大打筒和干筋6个烘烤阶段分别提取了颜色、纹理和温湿度特征,组建了9维特征向量进入小波核极限学习机,通过增量型算法自适应地选择神经元个数,快速准确地识别了6个阶段,得到了98.33%的识别率。实验结果表明本文提出的基于小波核极限学习机的烟叶烘烤过程的智能识别方法具有一定的可行性,为研发烟叶烘烤智能调控系统奠定了理论基础。 展开更多
关键词 极限学习机 小波核函数 烟叶烘烤 特征提取 识别
在线阅读 下载PDF
Application of wavelet support vector regression on SAR data de-noising 被引量:2
9
作者 Yi Lin Shaoming Zhang +1 位作者 Jianqing Cai Nico Sneeuw 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期579-586,共8页
A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise ... A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed. Based on the better per- formance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression, the wavelet kernel function is chosen as support vector kernel func- tion. Then the logarithmic SAR image is regressed with WSVR. Furthermore the regression distance is used as a judgment index of the noise type. According to the judgment of noise type every pixel can be adaptively de-noised with different filters. Through an approximation experiment for a one-dimensional complex signal, the feasibility of SAR data regression based on WSVR is con- firmed. Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function. The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well. 展开更多
关键词 synthetic aperture radar (SAR) support vector regres-sion (SVR) kernel function wavelet analysis function approximation.
在线阅读 下载PDF
加权核范数最小化和改进小波阈值函数的图像去噪算法 被引量:3
10
作者 郭昕刚 许连杰 +1 位作者 程超 霍金花 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第2期238-246,共9页
针对加权核范数最小化算法存在结构残余噪声以及无法较好地保持图像边缘结构的问题,提出基于加权核范数最小化和改进小波阈值函数的图像去噪算法。利用全变分模型对噪声图像进行初步去噪,使用噪声图像与初步去噪后的图像进行差分运算,... 针对加权核范数最小化算法存在结构残余噪声以及无法较好地保持图像边缘结构的问题,提出基于加权核范数最小化和改进小波阈值函数的图像去噪算法。利用全变分模型对噪声图像进行初步去噪,使用噪声图像与初步去噪后的图像进行差分运算,对差分后得到的噪声残差图像使用改进的小波阈值函数去噪,将小波去噪后的残差图像与初步去噪图像叠加,将叠加后的图像使用基于残余噪声水平迭代的加权核范数最小化算法进行二次去噪。相较于当下主流去噪算法,经该算法处理后的图像的PSNR和SSIM值均有所提升,能够更好地保持图像的纹理结构,且在高噪声环境下效果更佳。 展开更多
关键词 加权核范数 小波变换 噪声残差 全变分
在线阅读 下载PDF
小波DehazeFormer网络的道路交通图像去雾
11
作者 夏平 李子怡 +2 位作者 雷帮军 王雨蝶 唐庭龙 《光学精密工程》 EI CAS CSCD 北大核心 2024年第12期1915-1928,共14页
针对道路交通雾图像对比度低、细节丢失、模糊和失真的问题,提出了一种小波DehazeFormer模型的道路交通图像去雾方法。为提升模型去雾能力,构建了编解码结构的小波DehazeFormer网络,编码器以DehazeFormer与选择性核特征融合模块(Selecti... 针对道路交通雾图像对比度低、细节丢失、模糊和失真的问题,提出了一种小波DehazeFormer模型的道路交通图像去雾方法。为提升模型去雾能力,构建了编解码结构的小波DehazeFormer网络,编码器以DehazeFormer与选择性核特征融合模块(Selective kernel feature fusion,SKFF)级联作为骨干网络的基本单元,编码部分由三级这样的基本单元构成,以融合图像的原始信息和去雾后的信息,更好地捕获雾图中关键特征;中间特征层采用局部残差结构,并加入卷积注意力机制(Convolutional Block Attention Module,CBAM),对不同级别的特征赋予不同权重,同时融入内容引导注意力混合方案(Content-guided Attention based Mixup Fusion Scheme,CGAFusion),通过学习空间权重来调整特征;解码部分由DehazeFormer和SKFF构成,采用逐点卷积,在保证网络性能同时,减少网络的参数量;跳跃连接引入小波变换,对不同尺度的特征图进行小波分析,获取不同尺度的高、低频特征,放大交通雾图的细节使得复原图像保留纹理;最后,将原始图像和经解码后输出的特征图融合,获取更多的细节信息。实验结果表明,本文方法相比于基线DehazeFormer网络,其PSNR指标在公开数据集中提升1.32以上,在合成数据集中提升0.56,SSIM指标提升了0.015以上,MSE值有较大幅度降低,下降了23.15以上;Entropy指标提升0.06以上。本文去雾算法对提升交通雾图像的对比度、降低雾图模糊和失真及细节丢失等方面均表现出优良的性能,有助于后续道路交通的智能视觉监控与管理。 展开更多
关键词 交通图像去雾 小波变换 选择性核特征融合 内容引导注意力 DehazeFormer
在线阅读 下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测 被引量:9
12
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习机 小波包变换 超参数优化
在线阅读 下载PDF
基于双滑模的飞机燃油油量传感器故障监测方法
13
作者 曲鸣飞 张鑫 于鑫 《传感技术学报》 CAS CSCD 北大核心 2024年第11期1952-1957,共6页
飞机燃油油量传感器故障监测由于输出信号的不稳定性,导致故障正确识别率低、残差监测值与标准残差间误差大,提出基于双滑模的飞机燃油油量传感器故障监测方法。以故障产生原因分析结果为基础,引入双滑膜,利用等效输出误差注入原理建立... 飞机燃油油量传感器故障监测由于输出信号的不稳定性,导致故障正确识别率低、残差监测值与标准残差间误差大,提出基于双滑模的飞机燃油油量传感器故障监测方法。以故障产生原因分析结果为基础,引入双滑膜,利用等效输出误差注入原理建立双滑膜观测器,结合李雅普诺夫矩阵关系优化双滑膜观测器测量矩阵,采集故障信息;通过小波包分解法分解采集的信息,提取特征;引入核主成分分析法,建立标准主成分信息模型,利用采集信息在主成分模型上的投影,对比传感器信息与核主成分信息的偏移,实现飞机燃油油量传感器故障监测。仿真结果表明,所提方法的故障正确识别率为100%,且残差监测值与标准残差间最大仅存在0.02的误差,该方法能够有效监测飞机燃油油量传感器故障。 展开更多
关键词 传感器 故障监测 滑膜观测器 李雅普诺夫矩阵 小波包分解法 核主成分分析法
在线阅读 下载PDF
基于BA-MKELM的微电网故障识别与定位 被引量:2
14
作者 吴忠强 卢雪琴 《计量学报》 CSCD 北大核心 2024年第2期253-260,共8页
提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位... 提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位模型,并采用贝叶斯算法对多核极限学习机相关参数进行优化,进一步提高模型的逼近能力。为了验证所提模型的故障识别与定位性能,选用极限学习机和多核极限学习机分别建立故障诊断模型进行比较分析。实验结果表明,所提方法能够高性能地识别和定位微电网中任何类型的故障,识别和定位精度更高。 展开更多
关键词 电学计量 微电网线路 故障识别和定位 贝叶斯算法 多核极限学习机 小波包分解
在线阅读 下载PDF
基于LWKConv-DRSN-FPN的旋转机械故障诊断 被引量:3
15
作者 伍兴 李志伟 +1 位作者 宁文乐 郑照 《噪声与振动控制》 CSCD 北大核心 2024年第5期133-139,共7页
针对传统旋转机械故障诊断方法难以应对强噪声干扰以及诊断准确率较低的问题,提出一种Laplace小波核卷积层(Laplace Wavelet Kernel Convolutional Layer,LWKConv)、深度残差收缩网络(Deep Residual Shrinkage Networks,DRSN)和特征金... 针对传统旋转机械故障诊断方法难以应对强噪声干扰以及诊断准确率较低的问题,提出一种Laplace小波核卷积层(Laplace Wavelet Kernel Convolutional Layer,LWKConv)、深度残差收缩网络(Deep Residual Shrinkage Networks,DRSN)和特征金字塔网络(Feature Pyramid Networks,FPN)相结合的故障诊断方法。具体地,在DRSN模型结构基础上,构造LWKConv,通过更新尺度因子和平移因子,多尺度提取故障引起的突变冲击特征;引入FPN融合深层和浅层特征,提高模型对浅层细节信息的利用程度,实现对旋转机械的故障诊断。研究表明:所提的LWKConv-DRSN-FPN方法基于轴承和齿轮数据集的诊断准确率最高能达到100%,尤其在-4 dB强噪声干扰条件下的诊断准确率达到97.75%,能有效提取突变冲击特征,具有较好的通用性和抗强噪声干扰能力。 展开更多
关键词 故障诊断 旋转机械 Laplace小波核卷积层 深度残差收缩网络 特征金字塔网络
在线阅读 下载PDF
基于匹配追踪与核主成分分析的地震信号高分辨率处理方法 被引量:4
16
作者 党腾雲 徐天吉 +2 位作者 钱忠平 邹振 张红英 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期782-789,共8页
分辨率是影响地震资料解释结果的一个重要因素,地震信号分辨率低,将导致小断层、薄互层难以识别。为此,将匹配追踪算法与核主成分分析(KPCA)方法应用于地震资料处理,提出了基于匹配追踪与核主成分分析的地震信号高分辨率处理方法。首先... 分辨率是影响地震资料解释结果的一个重要因素,地震信号分辨率低,将导致小断层、薄互层难以识别。为此,将匹配追踪算法与核主成分分析(KPCA)方法应用于地震资料处理,提出了基于匹配追踪与核主成分分析的地震信号高分辨率处理方法。首先,利用匹配追踪算法通过稀疏分解不断迭代得到地震信号的最有效信息;然后,将子波替换为宽带Ricker子波进行整形处理,有效压制子波旁瓣,提高地震资料分辨率;最后,用核主成分分析方法将原始地震信号非线性映射到高维空间,在高维空间内重建地震信号,消除冗余信息。实际资料应用表明,经所提方法处理后的地震信号,波形更清晰,细节更丰富,处理结果有利于断层识别、薄层刻画,为后续地质资料解释、储层预测提供数据基础。 展开更多
关键词 匹配追踪 高分辨 子波整形 核主成分分析
在线阅读 下载PDF
基于卷积神经网络的肌电信号人体运动模式识别技术 被引量:1
17
作者 刘亚丽 鲁妍池 +1 位作者 马勋举 宋遒志 《兵工学报》 EI CAS CSCD 北大核心 2024年第7期2144-2158,共15页
随着外骨骼机器人等肌电控制设备的快速发展,表面肌电信号此类非平稳、非周期信号在高性能运动识别系统中的应用已成为相关研究领域的重点。为实现肌电信号跨域特征融合,提出一种基于肌电信号的双卷积链神经网络模型,采集7块关键肌肉的... 随着外骨骼机器人等肌电控制设备的快速发展,表面肌电信号此类非平稳、非周期信号在高性能运动识别系统中的应用已成为相关研究领域的重点。为实现肌电信号跨域特征融合,提出一种基于肌电信号的双卷积链神经网络模型,采集7块关键肌肉的原始肌电信号,经特征提取,转化为能量核相图和离散小波变换系数特征图,分别输入双卷积链神经网络的卷积神经网络分支和MobileNetV2分支,利用融合模块提取高层隐藏特征并进行充分交互。制备包括以上两种特征图像和传统肌电信号图谱在内的3种数据集。3组交叉实验结果表明:所提方法对6种自测下肢运动的平均识别准确率达94.19%,显著优于其他特征组合与网络架构;在ENABL3S开源数据集识别7种下肢运动中取得98.32%的稳态识别准确率,进一步验证了所提方法优良的肌电特征捕捉能力和模式识别准确性。 展开更多
关键词 外骨骼机器人 表面肌电信号 运动模式识别 双卷积链神经网络 能量核 小波变换分析
在线阅读 下载PDF
基于核函数支持向量回归的盾构姿态预测方法 被引量:3
18
作者 薛飞 徐建 +5 位作者 许迎顺 吴坚 郭平 曾少翔 肖方初 李泽华 《浙江工业大学学报》 CAS 北大核心 2024年第5期492-498,共7页
盾构机在掘进过程中,常因盾构机姿态控制不良导致一系列工程事故。为满足盾构隧道施工需求,需要找到一种能准确预测盾构姿态的方法,以达到合理纠偏的目的。提出了一种基于小波阈值去噪和支持向量回归(SVR)的盾构姿态预测方法,利用箱型... 盾构机在掘进过程中,常因盾构机姿态控制不良导致一系列工程事故。为满足盾构隧道施工需求,需要找到一种能准确预测盾构姿态的方法,以达到合理纠偏的目的。提出了一种基于小波阈值去噪和支持向量回归(SVR)的盾构姿态预测方法,利用箱型分析法筛选并清洗原始数据异常值,采用小波阈值去噪对数据训练集进行降噪处理,有效地提高了模型的性能。以可决系数R 2平均绝对误差MAE作为评价指标,评估了4种核函数的SVR盾构姿态预测效果。依托杭州某盾构工程,验证了该方法的有效性。研究结果表明:原始数据经过异常值清洗、小波阈值去噪后,线性核函数SVR预测表现最好,刀盘水平姿态的R 2和MAE分别达到0.930和8.180 mm,盾尾水平姿态的R 2和MAE分别达到0.949和7.061 mm。 展开更多
关键词 隧道 盾构 箱型分析法 小波阈值去噪 核函数 支持向量机
在线阅读 下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:4
19
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合核极限学习机 超参数优化
在线阅读 下载PDF
基于改进EMD-小波包的爆破振动信号降噪方法研究 被引量:10
20
作者 闫鹏 张云鹏 +2 位作者 侯善营 张为为 杨曦 《振动与冲击》 EI CSCD 北大核心 2024年第11期264-271,287,共9页
针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚... 针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚类特性以及小波包的降噪优势,不仅可以消除EMD的模态混叠,也具有良好的降噪效果。研究结果表明:与自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise analysis, CEEMDAN)和EMD方法相比,在模拟信号降噪试验中,改进EMD-小波包方法的信噪比(7.9 dB)最大,均方根误差(2.96)最小。在实测爆破振动信号降噪中,改进EMD-小波包方法降噪后的信号与原始信号相关系数最大为0.91。改进EMD-小波包和CEEMDAN方法的降噪效果相对理想,且改进EMD-小波包方法对10~60 Hz低频信号能量保存效果较好,对60 Hz以上中高频噪声的滤除效果最好。 展开更多
关键词 爆破振动信号 经验模态分解(EMD) 核主成分分析(KPCA) K-MEANS算法 小波包 降噪
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部