期刊文献+
共找到27,715篇文章
< 1 2 250 >
每页显示 20 50 100
Moving horizon based wavelet de-noising method of dual-observed geomagnetic signal for nonlinear high spin projectile roll positioning 被引量:3
1
作者 Ting-ting Yin Fang-xiu Jia Xiao-ming Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期417-424,共8页
Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal... Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal deforms in the exposed and magnetically contaminated environment.In order to preciously recognize the roll information and effectively separate the noise component from the original geomagnetic sequence,based on the error source analysis,we propose a moving horizon based wavelet de-noising method for the dual-observed geomagnetic signal filtering where the captured rough roll frequency value provides reasonable wavelet decomposition and reconstruction level selection basis for sampled sequence;a moving horizon window guarantees real-time performance and non-cumulative calculation amount.The complete geomagnetic data in full ballistic range and three intercepted paragraphs are used for performance assessment.The positioning performance of the moving horizon wavelet de-noising method is compared with the band-pass filter.The results show that both noise reduction techniques improve the positioning accuracy while the wavelet de-noising method is always better than the band-pass filter.These results suggest that the proposed moving horizon based wavelet de-noising method of the dual-observed geomagnetic signal is more applicable for various launch conditions with better positioning performance. 展开更多
关键词 High-spin PROJECTILE ROLL POSITIONING Dual-observed GEOMAGNETIC signal wavelet de-noising Discrete wavelet transform
在线阅读 下载PDF
Research on fiber optic gyro signal de-noising based on wavelet packet soft-threshold 被引量:7
2
作者 Qian Huaming & Ma Jichen Coll.of Automation,Harbin Engineering Univ.,Harbin 150001,P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期607-612,共6页
Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ... Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h. 展开更多
关键词 wavelet transform DRIFT fiber optic gyro soft-threshold signal de-noising
在线阅读 下载PDF
Application of wavelet support vector regression on SAR data de-noising 被引量:2
3
作者 Yi Lin Shaoming Zhang +1 位作者 Jianqing Cai Nico Sneeuw 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期579-586,共8页
A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise ... A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed. Based on the better per- formance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression, the wavelet kernel function is chosen as support vector kernel func- tion. Then the logarithmic SAR image is regressed with WSVR. Furthermore the regression distance is used as a judgment index of the noise type. According to the judgment of noise type every pixel can be adaptively de-noised with different filters. Through an approximation experiment for a one-dimensional complex signal, the feasibility of SAR data regression based on WSVR is con- firmed. Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function. The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well. 展开更多
关键词 synthetic aperture radar (SAR) support vector regres-sion (SVR) kernel function wavelet analysis function approximation.
在线阅读 下载PDF
Application and improvement of wavelet packet de-noising in satellite transponder
4
作者 Yannian Lou Chaojie Zhang +1 位作者 Xiaojun Jin Zhonghe Jin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期671-679,共9页
The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise con... The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR). 展开更多
关键词 wavelet packet de-noising (WPD) satellite transpon-der power consumption reduction real-time de-noising.
在线阅读 下载PDF
SAR image de-noising via grouping-based PCA and guided filter 被引量:5
5
作者 FANG Jing HU Shaohai MA Xiaole 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期81-91,共11页
A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we pro... A novel synthetic aperture radar(SAR)image de-noising method based on the local pixel grouping(LPG)principal component analysis(PCA)and guided filter is proposed.This method contains two steps.In the first step,we process the noisy image by coarse filters,which can suppress the speckle effectively.The original SAR image is transformed into the additive noise model by logarithmic transform with deviation correction.Then,we use the pixel and its nearest neighbors as a vector to select training samples from the local window by LPG based on the block similar matching.The LPG method ensures that only the similar sample patches are used in the local statistical calculation of PCA transform estimation,so that the local features of the image can be well preserved after coefficients shrinkage in the PCA domain.In the second step,we do the guided filtering which can effectively eliminate small artifacts left over from the coarse filtering.Experimental results of simulated and real SAR images show that the proposed method outstrips the state-of-the-art image de-noising methods in the peak signalto-noise ratio(PSNR),the structural similarity(SSIM)index and the equivalent number of looks(ENLs),and is of perceived image quality. 展开更多
关键词 synthetic aperture radar(SAR)image de-noising local pixel grouping(LPG) principal component analysis(PCA) guided filter
在线阅读 下载PDF
SAR image de-noising based on texture strength and weighted nuclear norm minimization 被引量:1
6
作者 Jing Fang Shuaiqi Liu +1 位作者 Yang Xiao Hailiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期807-814,共8页
As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nucl... As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality. 展开更多
关键词 synthetic aperture radar(SAR) image de-noising blind de-noising weighted nuclear norm minimization(WNNM) texture strength
在线阅读 下载PDF
基于ICEEMDAN-SSA-Wavelet的声发射信号降噪研究 被引量:1
7
作者 姚慧栋 金永 +1 位作者 王江 李玉珠 《现代电子技术》 北大核心 2024年第5期93-97,共5页
针对粘接件声发射(AE)信号含有噪声分量难以滤除的问题,提出一种改进ICEEMDAN的方法。该方法首先使用ICEEMDAN分解原始AE信号,并通过相关系数和能量差值的方法筛选出低频分量和高频分量;运用麻雀优化算法(SSA)优化后的改进小波阈值去噪... 针对粘接件声发射(AE)信号含有噪声分量难以滤除的问题,提出一种改进ICEEMDAN的方法。该方法首先使用ICEEMDAN分解原始AE信号,并通过相关系数和能量差值的方法筛选出低频分量和高频分量;运用麻雀优化算法(SSA)优化后的改进小波阈值去噪算法对其进行去噪;最后将保留的低频分量和去噪后的高频分量重构成一个新的信号,通过实验数据对比和分析评估降噪效果。实验结果表明,相较于改进小波阈值去噪和ICEEMDAN去噪,文中提出的方法对金属与非金属粘接件AE信号的降噪效果更好,能够保护原始信号的频域信息,进而提高脱粘检测精度。 展开更多
关键词 ICEEMDAN去噪 小波阈值去噪 声发射信号 金属与非金属粘接件 SSA 信号降噪
在线阅读 下载PDF
多时间尺度下载体金属铜及其伴生金属市场溢出效应研究 被引量:1
8
作者 吴巧生 王昱力 毕致玮 《中南大学学报(社会科学版)》 北大核心 2025年第1期107-122,共16页
关键金属是战略性新兴产业的关键原材料,其重要性日益凸显。多数关键金属矿产常以伴生状态存在,产量受载体金属约束,研究载体金属与伴生金属的价格影响关系,对于化解价格波动带来的风险尤为重要。采用多元小波与DY溢出指数研究载体金属... 关键金属是战略性新兴产业的关键原材料,其重要性日益凸显。多数关键金属矿产常以伴生状态存在,产量受载体金属约束,研究载体金属与伴生金属的价格影响关系,对于化解价格波动带来的风险尤为重要。采用多元小波与DY溢出指数研究载体金属铜及其伴生金属镍、锡、黄金之间的市场关联与溢出效应,结果显示,短期时间尺度下铜-镍相关性更强,长期时间尺度下铜-锡相关性更强。在不同时间尺度下,铜-镍、铜-锡金属对之间存在较强的共同运动。DY溢出结果显示,在各时间尺度下,铜与伴生金属市场存在双向溢出效应;铜是伴生金属市场风险的最大贡献者,且最容易受到伴生金属市场的冲击;在中长期的时间尺度下,铜与伴生金属的溢出幅度变化更大,分散组合投资效益差。 展开更多
关键词 载体金属 伴生金属 小波分析方法 溢出效应
在线阅读 下载PDF
基于强化双树复小波包变换的风电机组偏航轴承损伤识别 被引量:2
9
作者 王晓龙 金韩微 +3 位作者 张博文 石海超 杨秀彬 何玉灵 《动力工程学报》 北大核心 2025年第1期115-123,共9页
针对风电机组偏航轴承损伤识别问题,提出了基于强化双树复小波包变换的损伤识别方法。首先,通过双树复小波包变换与线性峭度结合对不同分解层数下的分量计算平均线性峭度值,确定最优分解层数;其次,对最优分解所得小波系数及尺度系数进... 针对风电机组偏航轴承损伤识别问题,提出了基于强化双树复小波包变换的损伤识别方法。首先,通过双树复小波包变换与线性峭度结合对不同分解层数下的分量计算平均线性峭度值,确定最优分解层数;其次,对最优分解所得小波系数及尺度系数进行幅值调制,进而增强不同信号成分的能量;然后,采用散布熵指标确定各分量最佳调制系数并通过双树复小波包逆变换得到修正信号;最后,对修正信号作归一化平方包络谱分析提取故障特征频率。结果表明:所提方法能够实现复杂工况下偏航轴承损伤类型的准确识别,具有一定工程参考价值。 展开更多
关键词 风电机组 偏航轴承 双树复小波包变换 谱幅值调制
在线阅读 下载PDF
多谱自适应小波和盲源分离耦合的生理信号降噪方法
10
作者 王振宇 向泽锐 +2 位作者 支锦亦 丁铁成 邹瑞 《北京航空航天大学学报》 北大核心 2025年第3期910-921,共12页
为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信... 为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信噪比(SNR)和均方根误差(RMSE)。结果表明:所提方法在软阈值下具有较强的适用性,增强后的信号软阈值相比硬阈值,SNR提升约44.2%,RMSE下降约28.8%,处理时间减少约1.4%。软阈值相比自适应阈值,SNR提升约706%,RMSE下降约16.7%,处理时间减少约3.0%。为对比软阈值下各参数差异,使用软阈值对原始信号、加噪信号和增强信号进行对比分析及归一化处理。结果显示增强后的信号具有较好的SNR、较低的RMSE和较短的处理时间,软阈值下增强后的信号与原始信号相比,SNR提升约0.12%,RMSE下降约2.5%,处理时间减少约3.9%,进一步验证了所提方法的有效性,并提高了信号质量。 展开更多
关键词 多谱自适应小波 盲源分离 小波变换 降噪方法 生理信号
在线阅读 下载PDF
超深层“断滩体”概念、地质模式及地震表征技术方法——以塔里木油田为例 被引量:1
11
作者 张银涛 常少英 +3 位作者 谢舟 罗枭 王孟修 杜一凡 《断块油气田》 北大核心 2025年第1期108-117,共10页
“断滩体”是塔里木盆地富满油田奥陶系超深层新型油藏类型,是超深层油气储量保持增长的有利接替勘探领域。以野外露头资料为基础,结合钻井、地震、生产动态等资料,建立了超深碳酸盐岩油气藏“断滩体”地质发育模式,并形成了超深碳酸盐... “断滩体”是塔里木盆地富满油田奥陶系超深层新型油藏类型,是超深层油气储量保持增长的有利接替勘探领域。以野外露头资料为基础,结合钻井、地震、生产动态等资料,建立了超深碳酸盐岩油气藏“断滩体”地质发育模式,并形成了超深碳酸盐岩“断滩体”地震刻画技术。研究结果表明:1)“断滩体”的形成机制为超深层灰岩台内滩体受主干断裂派生次序级网状断裂破碎作用改造形成。2)基于“断滩体”地质特征,采用波形指示反演识别滩体边界;利用地震子波分解、反射特征强化法识别低级序断裂;通过滩体与低级序断裂的融合,精细刻画出“断滩体”的边界及内部结构,是表征“断滩体”的有效手段。3)富满东部三维区鹰山组下段发育典型的“断滩体”,明确了“断滩体”圈闭范围,识别断滩体面积42.2 km^(2),勘探潜力较大。富东1井的成功突破,预示着富满油田新的控储模式的确立。超深层“断滩体”地震识别技术为其他地区类似储层的预测提供较好的借鉴意义。 展开更多
关键词 超深层 断滩体 台内滩 子波分解 低级序断裂
在线阅读 下载PDF
利用小波变换研究2024-01-23乌什M_(S)7.1地震前重力异常特征
12
作者 陈丽 刘代芹 +5 位作者 艾力夏提·玉山 阿卜杜塔伊尔·亚森 赵磊 丁宇 李秉烨 李瑞 《大地测量与地球动力学》 北大核心 2025年第3期279-283,共5页
利用南天山地区2020—2023年流动重力观测资料,获取2024-01-23乌什M_(S)7.1地震前不同时间尺度下区域重力场动态演化特征,并通过功率谱分析方法,获取各阶小波重力细节对应的近似场源深度。结果表明:1)流动重力(3 a尺度)结果显示,乌什M_(... 利用南天山地区2020—2023年流动重力观测资料,获取2024-01-23乌什M_(S)7.1地震前不同时间尺度下区域重力场动态演化特征,并通过功率谱分析方法,获取各阶小波重力细节对应的近似场源深度。结果表明:1)流动重力(3 a尺度)结果显示,乌什M_(S)7.1地震前,乌恰至巴楚地区和阿克苏地区重力变化呈现明显的四象限分布,震中位于四象限边缘及零值线附近;2)2020—2023年南天山地区重力场小波变换(4阶小波重力细节)结果显示,乌什M_(S)7.1地震前,乌恰至巴楚地区重力变化出现明显的四象限分布,震中位于四象限边缘及零值线附近。 展开更多
关键词 流动重力 小波变换 乌什地震
在线阅读 下载PDF
特征融合与BP神经网络结合的刀具磨损预测 被引量:1
13
作者 郭宏 徐延 +1 位作者 伊亚聪 胡孔耀 《机械设计与制造》 北大核心 2025年第1期108-111,116,共5页
通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在... 通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在时域、频域和时频域内分析并提取特征,再将融合后的各类传感器特征使用Pearson相关系数和主成分分析(PCA)实现数据降维,最后将降维后的融合特征输入搭建好的BP神经网络,通过非线性仿真分析,从而实现刀具磨损量的预测。案例验证表明:与单一传感器预测相比,提出的多传感器特征融合的刀具磨损预测方法误差最小,且决定系数R2达到0.993。 展开更多
关键词 传感器 特征提取 小波去噪 PCA BP神经网络 磨损预测
在线阅读 下载PDF
引入双曲正切阈值函数的平稳小波变换心电信号去噪方法 被引量:1
14
作者 王海勇 丁顾霏 《计算机科学》 北大核心 2025年第5期179-186,共8页
在心电信号的采集过程中,各种噪声充斥在心电信号中,这会使心电信号变得难以识别,从而影响医务人员的诊断。对心电信号进行去噪处理,是心电信号研究的重要环节。基于平稳小波变换的技术,针对平稳小波去噪过程中硬阈值、软阈值的缺陷,提... 在心电信号的采集过程中,各种噪声充斥在心电信号中,这会使心电信号变得难以识别,从而影响医务人员的诊断。对心电信号进行去噪处理,是心电信号研究的重要环节。基于平稳小波变换的技术,针对平稳小波去噪过程中硬阈值、软阈值的缺陷,提出一种可变参数下的双曲正切函数(SWTaVHT)来对心电信号进行去噪;同时,为了防止在去噪过程中丢失一些高频信息段,引入利用R峰位置信息辅助的修正方法,以更好地保留有用的信号特征。为了评估SWTaVHT的有效性,在公开数据库MIT-BIH上与现有的方法进行对比实验。结果表明,去噪之后的信噪比(SNR)、均方根误差(RMSE)和均方根差百分比(PRD)均优于现有方法。SWTaVHT在不改变原始信号振幅的情况下,对心电信号数据进行去噪处理,其效果优于现有方法。 展开更多
关键词 心电信号 阈值函数 平稳小波变换 R峰校正 去噪
在线阅读 下载PDF
基于小波去噪与同态滤波的带钢缺陷图像增强
15
作者 李恒 崔莹 +1 位作者 赵磊 刘辉 《沈阳工业大学学报》 北大核心 2025年第3期369-376,共8页
【目的】钢铁工业作为我国经济发展的支柱产业之一,在整个制造业中具有无可取代的地位。热轧带钢具有包容覆盖能力强、便于加工、节省材料等优点,是生产其他钢产品的主要原材料,提高带钢产品的表面质量是提高钢铁产品质量的重要环节。... 【目的】钢铁工业作为我国经济发展的支柱产业之一,在整个制造业中具有无可取代的地位。热轧带钢具有包容覆盖能力强、便于加工、节省材料等优点,是生产其他钢产品的主要原材料,提高带钢产品的表面质量是提高钢铁产品质量的重要环节。由于受到生产、加工、拍摄等多种因素的影响,原始带钢表面缺陷图像亮度不均匀、缺陷区域与非缺陷区域对比度较低,导致缺陷信息不够清晰、不便于检测。针对上述问题提出了一种基于小波去噪与改进同态滤波相结合的带钢表面缺陷图像增强算法。【方法】算法采用二级小波变换将原始图像分解为低频分量和高频分量。低频分量包含原图的主要信息,对低频分量进行增强处理以提升图像的整体效果。分别采用改进的同态滤波算法以及限制对比度自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法对低频分量进行增强,在均衡图像亮度的同时提高了整体对比度,并将上述两种算法处理后的低频图像基于适当的权重进行图像融合,得到增强后的低频分量。而高频分量包含图像的细节信息以及噪声,对高频分量使用了改进的阈值函数提升去噪效果,并较好地保留了边缘细节。将处理后的低频分量和高频分量通过小波重构得到最终的增强图像。【结果】通过主观视觉评价和客观评价指标对算法处理结果进行多组对比分析,与其他算法结果相比,经本文算法增强后的各类带钢表面缺陷图像亮度均明显提升,且整体亮度保持均衡,同时提高了对比度,图像的纹理细节和缺陷信息也更加明显。采用通用指标均方误差(mean square error,MSE)、峰值信噪比(peak signal to noise ratio,PSNR)和图像信息熵(image entropy,IE)对算法进行评估,综合分析各参数可知,本文算法对提高对比度、降低噪声效果较为显著,同时保留了更多的细节信息,失真度较小。【结论】实验结果表明,本文算法有效改善了带钢表面缺陷图像亮度不均匀的问题,在提高了整体对比度的同时提升了去噪效果,使缺陷信息和边缘细节得到显著增强,并且适用于多种类型的带钢表面缺陷检测。 展开更多
关键词 小波变换 同态滤波 阈值去噪 图像增强 带钢 表面缺陷 对比度自适应直方图均衡化 小波重构
在线阅读 下载PDF
小样本下基于DWT和2D-CNN的齿轮故障诊断方法 被引量:1
16
作者 宋庭新 黄继承 +2 位作者 刘尚奇 杜敏 李子平 《计算机集成制造系统》 北大核心 2025年第6期2206-2214,共9页
针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。... 针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。为了充分获取小样本中的信息来训练神经网络,利用离散小波分解、图像变换和Markov变迁场方法对样本信号进行增量和转换。通过验证齿轮箱数据集得到96%的训练准确率和87.5%的分类准确率,同时通过消融实验和对比实验证明,该方法可以有效克服小样本数据中的噪声干扰,使数据得到增强,在齿轮故障识别中具有很好的现实意义。 展开更多
关键词 故障诊断 小样本 二维卷积神经网络 小波变换
在线阅读 下载PDF
多策略改进麻雀搜索算法优化无迹卡尔曼滤波方法 被引量:1
17
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 许强伟 《科学技术与工程》 北大核心 2025年第1期227-237,共11页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对UT中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应t分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。 展开更多
关键词 无迹卡尔曼滤波 麻雀搜索算法 Cubic混沌映射 非线性自适应收敛因子 小波变异策略
在线阅读 下载PDF
基于双树复小波变换与稀疏表示的牙隐裂OCT三维图像融合 被引量:2
18
作者 石博雅 董潇阳 《天津工业大学学报》 北大核心 2025年第1期62-68,共7页
针对采用光学相干层析(OCT)技术进行体积较大的前磨牙和磨牙的隐裂检测时,仅从单一扫描视角采集可能存在误检或漏检的问题,提出一种双树复小波变换(DTCWT)与稀疏表示(SR)相结合的牙隐裂三维图像融合方法。利用扫频OCT对人工牙隐裂模型从... 针对采用光学相干层析(OCT)技术进行体积较大的前磨牙和磨牙的隐裂检测时,仅从单一扫描视角采集可能存在误检或漏检的问题,提出一种双树复小波变换(DTCWT)与稀疏表示(SR)相结合的牙隐裂三维图像融合方法。利用扫频OCT对人工牙隐裂模型从2个扫描视角进行成像,经过三维图像配准后,利用双树复小波变换对图像进行分解。对于低频子带进行稀疏表示,采用“最大L1范数”规则进行融合,高频子带采用“绝对最大”规则融合,最后通过DTCWT重构得到融合后的图像。实验结果表明:采用本文方法融合后的牙隐裂图像可以得到裂纹的完整信息,获得准确的定位和分级,各方面性能均优于单独采用各多尺度分解方法和稀疏表示方法,标准差(SD)、平均梯度(AG)、空间频率(SF)和边缘信息评价因子(Q)的值分别平均提高到36.7、6.0、27.9和0.74,有效提高了OCT牙隐裂检测的准确性。 展开更多
关键词 牙隐裂 光学相干层析 稀疏表示 双树复小波变换
在线阅读 下载PDF
基于黑翅鸢优化算法的分数阶Riccati微分方程数值解法
19
作者 胡行华 张瑶 《应用数学》 北大核心 2025年第3期751-761,共11页
利用黑翅鸢优化算法全局优化的优点,提出了基于Haar小波函数逼近和黑翅鸢优化算法的分数阶Riccati微分方程数值解法.结合Haar小波给出分数阶Riccati微分方程数值解的一般形式,将原问题转化为以逼近函数待定系数为变量的单目标优化问题,... 利用黑翅鸢优化算法全局优化的优点,提出了基于Haar小波函数逼近和黑翅鸢优化算法的分数阶Riccati微分方程数值解法.结合Haar小波给出分数阶Riccati微分方程数值解的一般形式,将原问题转化为以逼近函数待定系数为变量的单目标优化问题,再利用黑翅鸢优化算法对其进行求解.进而得到分数阶Riccati微分方程的Haar小波近似解.对不同分数阶Riccati微分方程实施数值实验评估,并对比现有数值方法所得结果,体现本方法的准确性和稳定性. 展开更多
关键词 黑翅鸢优化算法 HAAR小波 小波函数逼近 优化问题 数值解
在线阅读 下载PDF
基于小波变换增强位置编码Transformer的空域流量预测
20
作者 唐卫贞 刘波 +1 位作者 黄洲升 田齐齐 《现代电子技术》 北大核心 2025年第8期127-132,共6页
随着全球化进程的加快和航空技术的发展,对空中交通流量预测的精度要求也越来越高。为提高空中交通流量预测精度,减轻空中交通管制员的压力,提出一种增强位置编码的Transformer模型。利用小波变换对原始空域流量数据进行分析,通过信噪... 随着全球化进程的加快和航空技术的发展,对空中交通流量预测的精度要求也越来越高。为提高空中交通流量预测精度,减轻空中交通管制员的压力,提出一种增强位置编码的Transformer模型。利用小波变换对原始空域流量数据进行分析,通过信噪比选出性能最优的小波基函数,再进一步计算出小波系数并将其融入位置编码,以增强模型对时间序列数据的理解能力。实验结果表明,所提模型能够准确捕捉空中交通流量数据中的非平稳性和突变特征,其RMSE和MAPE评估指标较原始Transformer模型分别降低了29.9与2.9%,较LSTM模型分别降低了34.5与3.4%。该模型不仅提升了空域流量预测的准确性,也证实了小波变换在增强模型时间序列数据理解中的有效性,且为交通流量管理提供了一种新的技术方案。 展开更多
关键词 空域流量预测 增强位置编码 Transformer模型 小波变换 LSTM模型 小波基函数
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部