Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the e...Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the expression of Bacillus thuringiensis(Bt)insecticidal protein in cotton has significantly reduced the burden of pest without compromising environmental or human health.After the introduction of transgenic cotton,the cultivated area expanded to 22 million hectares,with a 64% increase in adoption by farmers worldwide.Currently,Bt cotton accounts for 93% of the cultivated cotton area in India.However,extensive use of Bt cotton has accelerated resistance development in pests like the pink bollworm.Furthermore,the overreliance on Bt cotton has reduced the use of broad-spectrum pesticides,favouring the emergence of secondary pests with significant challenges.This emphasizes the urgent necessity for developing novel pest management strategies.The high-dose and refuge strategy was initially effective for managing pest resistance in Bt cotton,but its implementation in India faced challenges due to misunderstandings about the use of non-Bt refuge crops.Although gene pyramiding was introduced as a solution,combining mono toxin also led to instances of cross-resistance.Therefore,there is a need for further exploration of biotechnological approaches to manage insect resistance in Bt cotton.Advanced biotechnological strategies,such as sterile insect release,RNA interference(RNAi)-mediated gene silencing,stacking Bt with RNAi,and genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR-Cas),offer promising tools for identifying and managing resistance genes in insects.Additionally,CRISPR-mediated gene drives and the development of novel biopesticides present potential avenues for effective pest management in cotton cultivation.These innovative approaches could significantly enhance the sustainability and efficacy of pest resistance management in Bt cotton.展开更多
In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aerug...In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aeruginosa growth control were investigated under lab cultured conditions. Related physiological changes were tested involving several important enzyme of antioxidant defense system (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondiadehyde (MDA), photosynthetic pigments, protein, soluble sugar and extracellular microcystin toxins (MC-LR)). Algal cell density was significantly inhibited by SWCNTs at high concentration (〉5.00 mg/L), and the inhibition rate was dose-dependent. For treatment with 100 mg/L SWCNTs, the inhibitory rates even reached above 90%. 96 h IC50 was determined as 22 mg/L. Antioxidant enzyme activities were dramatically dropped with increasing lipid peroxidation at higher SWCNTs concentration, indicating intracellular generation of reactive oxygen species (ROS) and oxidative stress damage in algae. Reduction of photosynthetic pigments, soluble sugar and protein contents suggested that SWCNTs may severely ruin algal photosynthesis system, destroy the metabolism-related structure of cell, and thus lead to negative physiological status in M. aeruginosa. Besides, SWCNTs can effectively decrease the amount of extracellular microcystins in culture medium.展开更多
Background: In order to uncover the mechanism of significantly reduced insect resistance at the late developmental stage in cotton(Gossypium hirsutum L.),the relationship between boll setting rate under different plan...Background: In order to uncover the mechanism of significantly reduced insect resistance at the late developmental stage in cotton(Gossypium hirsutum L.),the relationship between boll setting rate under different planting densities and Bacillus thuringiensis(Bt)insecticidal concentrations in the boll wall were investigated in the present study.Two studies were arranged at Yangzhou,China during the 2017–2018 cotton growth seasons.Five planting densities(15000,25000,45000,60000 and 75000 plants per hectare)and the flower-removal treatment were imposed separately on Bt cotton cultivar Sikang3 to arrange different boll setting rates,and the boll setting rates and Bt toxin content were compared.Results: Higher boll setting rate together with lower Bt toxin contents in boll wall was observed under low planting density,whereas lower boll setting rate and higher Bt toxin contents were found under high planting density.Also,higher Bt protein concentration was associated with higher soluble protein content,glutamic-pyruvic transaminase(GPT),and glutamic oxaloacetate transaminase(GOT)activities,but lower amino acid content,and protease and peptidase activities.It was further confirmed that a higher boll setting rate with lower Bt protein content under flower-removal.Conclusions: This study demonstrated that the insecticidal efficacy of boll walls was significantly impacted by boll formation.Reduced protein synthesis and enhanced protein degradation were related to the reduced Bt toxin concentration.展开更多
OBJECTIVE To analyze the whole transcriptome of zoanthid Protopalythoa variabilis(P.variabilis),a cnidarian,and discover the potential toxic substances in P.variabilis.METHODS The P.variabilis RNA deep sequencing was ...OBJECTIVE To analyze the whole transcriptome of zoanthid Protopalythoa variabilis(P.variabilis),a cnidarian,and discover the potential toxic substances in P.variabilis.METHODS The P.variabilis RNA deep sequencing was performed using the HiSeq 2500 automatic sequencing platform.All the unigenes generated from the assembly process were functionally annotated based on the similarity with databases.The multiple alignments of translated toxin-related sequences were performed with Clustalw2,and amino acid identity and similarity highlighted by using BoxShade tool.Three different methods including ITASSER,PEP-FOLD and MODELLER were applied to predict tri-dimensional models of toxin-related polypeptides from translated transcript sequences of P.variabilis.The toxicity of one of the putative toxins,namely ShK/Aurelin-like peptide,was evaluated using zebrafish model.RESULTS A total of 67,549,914 pairs of quality-filtered,90-base-pair Illumina reads from an mRNA sample were obtained.The de novo assemblies yielded 276,526 contigs.The sequence comparison of 130,121 unigenes with entries in Toxin database showed that 1542 unigenes were potential peptide toxins at which 11 unigenes were related to Stichodactyla toxin(ShK)domain(Pfam ID:PF01549).ShK is a 35 residues peptide sequence that was firstly discovered from the sea anemone Stichodactyla helianthus.Here,we found out one ShK-like peptide that processed a relatively higher sequence similarity with known ShK(Uniprot ID:P29186)of Bunodosoma granuliferum(red warty sea anemone).The Protopalythoa Shk-like peptide was submitted to Probis server to detect probable binding site and found to match with a protein AURELIN(PDB id:2lg4,UniProt id:Q0MWV8)which possesses structural homology with previously identified antimicrobial peptides and K+-channel-blocking toxins.Our results showed that the ShK/Aurelin-like peptide was lethal to zebrafish embryos at concentrations above 30-μmol·L1,and could induce zebrafish locomotor deficit at 10μmol·L-1.CONCLUSION This study,for the first time,presented the whole transcriptome profile and a potential toxic peptide of P.variabilis.展开更多
Bacillus thuringiensis is a ubiquitous gram-positive, spore-forming bacterium that forms parasporal crystal during the stationary phase of its growth cycle. These crystal proteins, including Cry and Cyt protein, are t...Bacillus thuringiensis is a ubiquitous gram-positive, spore-forming bacterium that forms parasporal crystal during the stationary phase of its growth cycle. These crystal proteins, including Cry and Cyt protein, are toxic to certain insects. Lately, some problems about Cyt classification, structural characteristic, action mechanism and resistance to Cyt toxin are becoming new hotspots. We review the progress of above problems in several foreign labs.展开更多
T-2 toxin is the most widespread mycotoxin in crops,feed and food,which poses a serious threat to body health.Bone is the main target tissue for T-2 toxin accumulation.Ingestion of food contaminated by T-2 toxin is th...T-2 toxin is the most widespread mycotoxin in crops,feed and food,which poses a serious threat to body health.Bone is the main target tissue for T-2 toxin accumulation.Ingestion of food contaminated by T-2 toxin is the main cause of Kashin-Beck disease.However,the specific mechanism of bone damage caused by T-2 toxin is still unclear.In this study,a total of 40 male C57BL/6N mice were divided into four groups and orally treated with 0,0.5,1.0 and 2.0 mg·kg^(-1) body weight T-2 toxin for 28 days.The results showed that exposure to T-2 toxin led to weight loss,bone mineral density reduction and femoral structural damage of mice.In addition,osteoblast-mediated bone formation was inhibited,and osteoclast-mediated bone resorption was enhanced.Meanwhile,the levels of bone metabolism-related hormones including parathyroid hormone,calcitonin and 1,25-dihydroxyvitamin D3 were reduced.More importantly,it was found that the level of neuropeptide Y(a neurohormone)was decreased.These results provided a new perspetive for understanding the osteotoxicity of T-2 toxin.展开更多
文摘Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the expression of Bacillus thuringiensis(Bt)insecticidal protein in cotton has significantly reduced the burden of pest without compromising environmental or human health.After the introduction of transgenic cotton,the cultivated area expanded to 22 million hectares,with a 64% increase in adoption by farmers worldwide.Currently,Bt cotton accounts for 93% of the cultivated cotton area in India.However,extensive use of Bt cotton has accelerated resistance development in pests like the pink bollworm.Furthermore,the overreliance on Bt cotton has reduced the use of broad-spectrum pesticides,favouring the emergence of secondary pests with significant challenges.This emphasizes the urgent necessity for developing novel pest management strategies.The high-dose and refuge strategy was initially effective for managing pest resistance in Bt cotton,but its implementation in India faced challenges due to misunderstandings about the use of non-Bt refuge crops.Although gene pyramiding was introduced as a solution,combining mono toxin also led to instances of cross-resistance.Therefore,there is a need for further exploration of biotechnological approaches to manage insect resistance in Bt cotton.Advanced biotechnological strategies,such as sterile insect release,RNA interference(RNAi)-mediated gene silencing,stacking Bt with RNAi,and genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR-Cas),offer promising tools for identifying and managing resistance genes in insects.Additionally,CRISPR-mediated gene drives and the development of novel biopesticides present potential avenues for effective pest management in cotton cultivation.These innovative approaches could significantly enhance the sustainability and efficacy of pest resistance management in Bt cotton.
基金Project(035703011) supported by the Scientific Research Double Support Program of SICAU,China
文摘In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aeruginosa growth control were investigated under lab cultured conditions. Related physiological changes were tested involving several important enzyme of antioxidant defense system (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondiadehyde (MDA), photosynthetic pigments, protein, soluble sugar and extracellular microcystin toxins (MC-LR)). Algal cell density was significantly inhibited by SWCNTs at high concentration (〉5.00 mg/L), and the inhibition rate was dose-dependent. For treatment with 100 mg/L SWCNTs, the inhibitory rates even reached above 90%. 96 h IC50 was determined as 22 mg/L. Antioxidant enzyme activities were dramatically dropped with increasing lipid peroxidation at higher SWCNTs concentration, indicating intracellular generation of reactive oxygen species (ROS) and oxidative stress damage in algae. Reduction of photosynthetic pigments, soluble sugar and protein contents suggested that SWCNTs may severely ruin algal photosynthesis system, destroy the metabolism-related structure of cell, and thus lead to negative physiological status in M. aeruginosa. Besides, SWCNTs can effectively decrease the amount of extracellular microcystins in culture medium.
基金Natural Science Research of Jiangsu Higher Education Institutions of China(17KJA210003)The Project#31671613 and#31901462 supported by National Natural Science Foundation of China,Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)+1 种基金Natural Science Foundation of Jiangsu Province(BK20191439)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_2106).
文摘Background: In order to uncover the mechanism of significantly reduced insect resistance at the late developmental stage in cotton(Gossypium hirsutum L.),the relationship between boll setting rate under different planting densities and Bacillus thuringiensis(Bt)insecticidal concentrations in the boll wall were investigated in the present study.Two studies were arranged at Yangzhou,China during the 2017–2018 cotton growth seasons.Five planting densities(15000,25000,45000,60000 and 75000 plants per hectare)and the flower-removal treatment were imposed separately on Bt cotton cultivar Sikang3 to arrange different boll setting rates,and the boll setting rates and Bt toxin content were compared.Results: Higher boll setting rate together with lower Bt toxin contents in boll wall was observed under low planting density,whereas lower boll setting rate and higher Bt toxin contents were found under high planting density.Also,higher Bt protein concentration was associated with higher soluble protein content,glutamic-pyruvic transaminase(GPT),and glutamic oxaloacetate transaminase(GOT)activities,but lower amino acid content,and protease and peptidase activities.It was further confirmed that a higher boll setting rate with lower Bt protein content under flower-removal.Conclusions: This study demonstrated that the insecticidal efficacy of boll walls was significantly impacted by boll formation.Reduced protein synthesis and enhanced protein degradation were related to the reduced Bt toxin concentration.
基金The project supported by grants from the Science and Technology Development Fund of Macao,China(058/2009and 078/2011/A3)Research Committee,University of Macao〔MYRG138(Y1-Y4)-ICMS12-LMY and MYRG139(Y1-Y4)-ICMS-LMY〕
文摘OBJECTIVE To analyze the whole transcriptome of zoanthid Protopalythoa variabilis(P.variabilis),a cnidarian,and discover the potential toxic substances in P.variabilis.METHODS The P.variabilis RNA deep sequencing was performed using the HiSeq 2500 automatic sequencing platform.All the unigenes generated from the assembly process were functionally annotated based on the similarity with databases.The multiple alignments of translated toxin-related sequences were performed with Clustalw2,and amino acid identity and similarity highlighted by using BoxShade tool.Three different methods including ITASSER,PEP-FOLD and MODELLER were applied to predict tri-dimensional models of toxin-related polypeptides from translated transcript sequences of P.variabilis.The toxicity of one of the putative toxins,namely ShK/Aurelin-like peptide,was evaluated using zebrafish model.RESULTS A total of 67,549,914 pairs of quality-filtered,90-base-pair Illumina reads from an mRNA sample were obtained.The de novo assemblies yielded 276,526 contigs.The sequence comparison of 130,121 unigenes with entries in Toxin database showed that 1542 unigenes were potential peptide toxins at which 11 unigenes were related to Stichodactyla toxin(ShK)domain(Pfam ID:PF01549).ShK is a 35 residues peptide sequence that was firstly discovered from the sea anemone Stichodactyla helianthus.Here,we found out one ShK-like peptide that processed a relatively higher sequence similarity with known ShK(Uniprot ID:P29186)of Bunodosoma granuliferum(red warty sea anemone).The Protopalythoa Shk-like peptide was submitted to Probis server to detect probable binding site and found to match with a protein AURELIN(PDB id:2lg4,UniProt id:Q0MWV8)which possesses structural homology with previously identified antimicrobial peptides and K+-channel-blocking toxins.Our results showed that the ShK/Aurelin-like peptide was lethal to zebrafish embryos at concentrations above 30-μmol·L1,and could induce zebrafish locomotor deficit at 10μmol·L-1.CONCLUSION This study,for the first time,presented the whole transcriptome profile and a potential toxic peptide of P.variabilis.
文摘Bacillus thuringiensis is a ubiquitous gram-positive, spore-forming bacterium that forms parasporal crystal during the stationary phase of its growth cycle. These crystal proteins, including Cry and Cyt protein, are toxic to certain insects. Lately, some problems about Cyt classification, structural characteristic, action mechanism and resistance to Cyt toxin are becoming new hotspots. We review the progress of above problems in several foreign labs.
基金Supported by the National Natural Science Foundation of China(31872530)。
文摘T-2 toxin is the most widespread mycotoxin in crops,feed and food,which poses a serious threat to body health.Bone is the main target tissue for T-2 toxin accumulation.Ingestion of food contaminated by T-2 toxin is the main cause of Kashin-Beck disease.However,the specific mechanism of bone damage caused by T-2 toxin is still unclear.In this study,a total of 40 male C57BL/6N mice were divided into four groups and orally treated with 0,0.5,1.0 and 2.0 mg·kg^(-1) body weight T-2 toxin for 28 days.The results showed that exposure to T-2 toxin led to weight loss,bone mineral density reduction and femoral structural damage of mice.In addition,osteoblast-mediated bone formation was inhibited,and osteoclast-mediated bone resorption was enhanced.Meanwhile,the levels of bone metabolism-related hormones including parathyroid hormone,calcitonin and 1,25-dihydroxyvitamin D3 were reduced.More importantly,it was found that the level of neuropeptide Y(a neurohormone)was decreased.These results provided a new perspetive for understanding the osteotoxicity of T-2 toxin.