Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology...Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future.展开更多
The railway pantograph-catenary system employs a ratchet compensation device to sustain the tension of the contact wire.However,the excessive weight associated with the ratchet structure adversely affects the performa...The railway pantograph-catenary system employs a ratchet compensation device to sustain the tension of the contact wire.However,the excessive weight associated with the ratchet structure adversely affects the performance of the compensation device.An optimization design aimed at lightweight optimization of the ratchet wheel structure can enhance the system’s agility,improve material utilization,and reduce costs.This study uses a finite element model to establish an equivalent load model for the ratchet under service conditions and analyzes its load-bearing state.An optimization model was created and solved using ANSYS Workbench.The topological optimization configurations were compared under unconstrained conditions and four different periodic constraint scenarios.Following this,the structure was redesigned based on the topological optimization results,and a simulation analysis was conducted to compare the reconstructed model with the original model.The comparison results indicate that the masses of all four optimized models have been reduced by more than 10%.Additionally,under conditions of a fully wound compensation rope,the maximum stress has decreased by over 20%,leading to a more uniform stress distribution and improved overall performance.The topology optimization and redesign method based on periodic constraints offers a viable engineering solution for the lightweight design of the ratchet structure.展开更多
The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function....The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function. In a topology opti- mization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin (EFG) method. The central processing unit (CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown.展开更多
Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging ...Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging because of difficulties such as high non-linearity of impact resistance,manufacturing limitations of reactive materials and high expenses of penetration experiments.In this study,a design optimization methodology for the reactive material structure is developed based on the finite element analysis.A finite element model for penetration analysis is introduced to save the expenses of the experiments.Impact resistance is assessed through the analysis,and result is calibrated by comparing with experimental results.Based on the model,topology optimization is introduced to determine shape of the structure.The design variables and constraints of the optimization are proposed considering the manufacturing limitations,and the optimal shape that can be manufactured by cold spraying is determined.Based on the optimal shape,size optimization is introduced to determine the geometric dimensions of the structure.As a result,optimal design of the reactive material structure and steel case of the penetrative projectile,which maximizes the impact resistance,is determined.Using the design process proposed in this study,reactive material structures can be designed considering not only mechanical performances but also manufacturing limitations,with reasonable time and cost.展开更多
The electromagnetic wave enhanced transmission(ET)through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential.It was important to find a general design method which c...The electromagnetic wave enhanced transmission(ET)through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential.It was important to find a general design method which can realize efficient ET for arbitrary-shaped apertures.For achieving ET with maximum efficiency at specific frequency through arbitrary-shaped subwavelength aperture,a topology optimization method for designing metamaterials(MTM)microstructure was proposed in this study.The MTM was employed and inserted vertically in the aperture.The description function for the arbitrary shape of the aperture was established.The optimization model was founded to search the optimal MTM microstructure for maximum enhanced power transmission through the aperture at the demanded frequency.Several MTM microstructures for ET through the apertures with different shapes at the demanded frequency were designed as examples.The simulation and experimental results validate the feasibility of the method.The regularity of the optimal ET microstructures and their advantages over the existing configurations were discussed.展开更多
Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a die...Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a dielectric laser accelerator(DLA)made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level.To design DLA structures with a high acceleration gradient,we demonstrate topology optimization,which is a method used to optimize the material distribution in a specific area based on given load conditions,constraints,and performance indicators.To demonstrate the effectiveness of this approach,we propose two schemes and design several acceleration structures based on them.The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators,producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods.These results provide new physical approaches to explore ultrafast dynamics in matter,with important implications for future laser particle accelerators based on photonic chips.展开更多
A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy.Unlike the popular stream f...A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy.Unlike the popular stream function method,the proposed method has design variables that are the distribution of conductive material.A voltage-driven transverse gradient coil is proposed to be used as micro-scale magnetic resonance imaging(MRI)gradient coils,thus avoiding introducing a coil-winding pattern and simplifying the coil configuration.The proposed method avoids post-processing errors that occur when the continuous current density is approximated by discrete wires in the stream function approach.The feasibility and accuracy of the method are verified through designing the z-gradient and y-gradient coils on a cylindrical surface.Numerical design results show that the proposed method can provide a new coil layout in a compact design space.展开更多
A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering a...A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar.展开更多
Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the m...Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields.展开更多
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne...Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.展开更多
Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity str...Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity structure of process holes in its internal flow channel,seriously affecting the flow performance of oil.Based on the new design space provided by additive manufacturing technology,the internal hydraulic flow channel of valve block is optimized by using B-spline curve.Computational fluid dynamics analysis is carried out on the hydraulic flow channel to determine the optimal flow channel structure with the smallest pressure drop.The weight reduction of hydraulic valve block is carried out through topology optimization.According to the results of topology optimization,using the method of selective laser melting(SLM),the printing of the hydraulic valve block is completed.The optimized hydraulic channel reduces the pressure loss by 31.4%compared with the traditional hydraulic channel.Compared with the traditional valve block,the hydraulic valve block manufactured by SLM with topology optimization reduces the weight by 33.9%.Therefore,the proposed flow channel optimization and valve block lightweight method provide a new reference for the performance improvement of the internal flow channel of hydraulic valve block and the overall lightweight design of valve block.展开更多
Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout...Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.展开更多
Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present...Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an emcient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.展开更多
The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ...The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.展开更多
基金sponsored by the National Key Research and Development Program of China[Grant Nos.2020YFC0826804 and 2022YFC3320504]the National Natural Science Foundation of China[Grant No.11772059]。
文摘Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future.
基金supported by the National Natural Science Foundation of China(Grant No.52075033)Research and Development Plan of REG(Grant No.2023-20)。
文摘The railway pantograph-catenary system employs a ratchet compensation device to sustain the tension of the contact wire.However,the excessive weight associated with the ratchet structure adversely affects the performance of the compensation device.An optimization design aimed at lightweight optimization of the ratchet wheel structure can enhance the system’s agility,improve material utilization,and reduce costs.This study uses a finite element model to establish an equivalent load model for the ratchet under service conditions and analyzes its load-bearing state.An optimization model was created and solved using ANSYS Workbench.The topological optimization configurations were compared under unconstrained conditions and four different periodic constraint scenarios.Following this,the structure was redesigned based on the topological optimization results,and a simulation analysis was conducted to compare the reconstructed model with the original model.The comparison results indicate that the masses of all four optimized models have been reduced by more than 10%.Additionally,under conditions of a fully wound compensation rope,the maximum stress has decreased by over 20%,leading to a more uniform stress distribution and improved overall performance.The topology optimization and redesign method based on periodic constraints offers a viable engineering solution for the lightweight design of the ratchet structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.11571223 and U1433104)
文摘The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function. In a topology opti- mization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin (EFG) method. The central processing unit (CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown.
基金the Agency for Defense Development,Republic of Korea[grant number UD170110GD].
文摘Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging because of difficulties such as high non-linearity of impact resistance,manufacturing limitations of reactive materials and high expenses of penetration experiments.In this study,a design optimization methodology for the reactive material structure is developed based on the finite element analysis.A finite element model for penetration analysis is introduced to save the expenses of the experiments.Impact resistance is assessed through the analysis,and result is calibrated by comparing with experimental results.Based on the model,topology optimization is introduced to determine shape of the structure.The design variables and constraints of the optimization are proposed considering the manufacturing limitations,and the optimal shape that can be manufactured by cold spraying is determined.Based on the optimal shape,size optimization is introduced to determine the geometric dimensions of the structure.As a result,optimal design of the reactive material structure and steel case of the penetrative projectile,which maximizes the impact resistance,is determined.Using the design process proposed in this study,reactive material structures can be designed considering not only mechanical performances but also manufacturing limitations,with reasonable time and cost.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1808215)the Natural Science Foundation of Liaoning Province,China(Grant No.20180540082)the Science and Technology Program of Shenzhen(Grant No.JSGG 20200102155001779).
文摘The electromagnetic wave enhanced transmission(ET)through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential.It was important to find a general design method which can realize efficient ET for arbitrary-shaped apertures.For achieving ET with maximum efficiency at specific frequency through arbitrary-shaped subwavelength aperture,a topology optimization method for designing metamaterials(MTM)microstructure was proposed in this study.The MTM was employed and inserted vertically in the aperture.The description function for the arbitrary shape of the aperture was established.The optimization model was founded to search the optimal MTM microstructure for maximum enhanced power transmission through the aperture at the demanded frequency.Several MTM microstructures for ET through the apertures with different shapes at the demanded frequency were designed as examples.The simulation and experimental results validate the feasibility of the method.The regularity of the optimal ET microstructures and their advantages over the existing configurations were discussed.
基金the National Natural Science Foundation of China(Nos.12004353,11975214,11991071,11905202,12174350)Key Laboratory Foundation of The Sciences and Technology on Plasma Physics Laboratory(No.6142A04200103)Independent scientific research(No.JCKYS2021212011).
文摘Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a dielectric laser accelerator(DLA)made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level.To design DLA structures with a high acceleration gradient,we demonstrate topology optimization,which is a method used to optimize the material distribution in a specific area based on given load conditions,constraints,and performance indicators.To demonstrate the effectiveness of this approach,we propose two schemes and design several acceleration structures based on them.The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators,producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods.These results provide new physical approaches to explore ultrafast dynamics in matter,with important implications for future laser particle accelerators based on photonic chips.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51675506 and 51275504)the German Research Foundation(DFG)(Grant Nos.#ZA 422/5-1 and#ZA 422/6-1)
文摘A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy.Unlike the popular stream function method,the proposed method has design variables that are the distribution of conductive material.A voltage-driven transverse gradient coil is proposed to be used as micro-scale magnetic resonance imaging(MRI)gradient coils,thus avoiding introducing a coil-winding pattern and simplifying the coil configuration.The proposed method avoids post-processing errors that occur when the continuous current density is approximated by discrete wires in the stream function approach.The feasibility and accuracy of the method are verified through designing the z-gradient and y-gradient coils on a cylindrical surface.Numerical design results show that the proposed method can provide a new coil layout in a compact design space.
基金Project supported by the Open Fund of Wuhan National Research Center for Optoelectronics(Grant No.2022WNLOKF012)the National College Students Innovation Innovation and Entrepreneurship Training Program(Grant No.2023102930147).
文摘A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar.
基金supported by the National Natural Science Foundation of China and the Open Project Program of Wuhan National Laboratory for Optoelectronics(Grant No.2022WNLOKF012).
文摘Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields.
文摘Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.
基金supported by the National Natural Science Foundation of China(No.51775273)the Jiangsu Province Science and Technology Support Plan Project(No.BE2018010-2)+2 种基金the National Defence Basic Scientific Research Program of China(No.JCKY2018605C010)the Frontiers of Science and Technology Program of China (No.1816312ZT00406301)the Aeronautical Science Foundation of China(No.2020Z049052002)
文摘Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity structure of process holes in its internal flow channel,seriously affecting the flow performance of oil.Based on the new design space provided by additive manufacturing technology,the internal hydraulic flow channel of valve block is optimized by using B-spline curve.Computational fluid dynamics analysis is carried out on the hydraulic flow channel to determine the optimal flow channel structure with the smallest pressure drop.The weight reduction of hydraulic valve block is carried out through topology optimization.According to the results of topology optimization,using the method of selective laser melting(SLM),the printing of the hydraulic valve block is completed.The optimized hydraulic channel reduces the pressure loss by 31.4%compared with the traditional hydraulic channel.Compared with the traditional valve block,the hydraulic valve block manufactured by SLM with topology optimization reduces the weight by 33.9%.Therefore,the proposed flow channel optimization and valve block lightweight method provide a new reference for the performance improvement of the internal flow channel of hydraulic valve block and the overall lightweight design of valve block.
基金supported by the National Natural Science Foundation of China(No.51375396)the Shaanxi Science and Technology Innovation Project Plan,China(No.2016KTCQ01-50)
文摘Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60345008, 60537010, 60536030, and the National High Technology Research and Development Programme of China under Grant No 2005AA311030.
文摘Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an emcient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.
基金Sponsored by the Ministerial Level Advanced Research Foundation (010896367)
文摘The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.