期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Ballistic performance of additive manufacturing 316l stainless steel projectiles based on topology optimization method
1
作者 Hao Xue Tao Wang +2 位作者 Xinyu Cui Yifan Wang Guangyan Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期1-17,共17页
Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology... Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future. 展开更多
关键词 Additive manufacturing topology optimization Ballistic performance Projectile design
在线阅读 下载PDF
Topology optimization of a ratchet compensation structure subject to periodic constraints
2
作者 Taining Qi Tao Yan +2 位作者 Shiju Song Yu Zhu Geng Chen 《High-Speed Railway》 2024年第4期230-240,共11页
The railway pantograph-catenary system employs a ratchet compensation device to sustain the tension of the contact wire.However,the excessive weight associated with the ratchet structure adversely affects the performa... The railway pantograph-catenary system employs a ratchet compensation device to sustain the tension of the contact wire.However,the excessive weight associated with the ratchet structure adversely affects the performance of the compensation device.An optimization design aimed at lightweight optimization of the ratchet wheel structure can enhance the system’s agility,improve material utilization,and reduce costs.This study uses a finite element model to establish an equivalent load model for the ratchet under service conditions and analyzes its load-bearing state.An optimization model was created and solved using ANSYS Workbench.The topological optimization configurations were compared under unconstrained conditions and four different periodic constraint scenarios.Following this,the structure was redesigned based on the topological optimization results,and a simulation analysis was conducted to compare the reconstructed model with the original model.The comparison results indicate that the masses of all four optimized models have been reduced by more than 10%.Additionally,under conditions of a fully wound compensation rope,the maximum stress has decreased by over 20%,leading to a more uniform stress distribution and improved overall performance.The topology optimization and redesign method based on periodic constraints offers a viable engineering solution for the lightweight design of the ratchet structure. 展开更多
关键词 topology optimization SIMP density-based method Ratchet compensation device ANSYS Workbench
在线阅读 下载PDF
Topology optimization using the improved element-free Galerkin method for elasticity 被引量:3
3
作者 吴意 马永其 +1 位作者 冯伟 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期32-39,共8页
The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function.... The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function. In a topology opti- mization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin (EFG) method. The central processing unit (CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown. 展开更多
关键词 meshless method improved moving least-squares approximation improved element-free Galerkinmethod topology optimization
在线阅读 下载PDF
Topology optimization of reactive material structures for penetrative projectiles 被引量:1
4
作者 Shinyu Kim Saekyeol Kim +4 位作者 Taekyun Kim Sangin Choi Tae Hee Lee Jung Su Park Sang-Hyun Jung 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第7期1205-1218,共14页
Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging ... Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging because of difficulties such as high non-linearity of impact resistance,manufacturing limitations of reactive materials and high expenses of penetration experiments.In this study,a design optimization methodology for the reactive material structure is developed based on the finite element analysis.A finite element model for penetration analysis is introduced to save the expenses of the experiments.Impact resistance is assessed through the analysis,and result is calibrated by comparing with experimental results.Based on the model,topology optimization is introduced to determine shape of the structure.The design variables and constraints of the optimization are proposed considering the manufacturing limitations,and the optimal shape that can be manufactured by cold spraying is determined.Based on the optimal shape,size optimization is introduced to determine the geometric dimensions of the structure.As a result,optimal design of the reactive material structure and steel case of the penetrative projectile,which maximizes the impact resistance,is determined.Using the design process proposed in this study,reactive material structures can be designed considering not only mechanical performances but also manufacturing limitations,with reasonable time and cost. 展开更多
关键词 Reactive material Penetrative projectile topology optimization Manufacturing constraint Cold gas dynamic spray Additive manufacturing
在线阅读 下载PDF
Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
5
作者 Pengfei Shi Yangyang Cao +2 位作者 Hongge Zhao Renjing Gao Shutian Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期558-564,共7页
The electromagnetic wave enhanced transmission(ET)through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential.It was important to find a general design method which c... The electromagnetic wave enhanced transmission(ET)through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential.It was important to find a general design method which can realize efficient ET for arbitrary-shaped apertures.For achieving ET with maximum efficiency at specific frequency through arbitrary-shaped subwavelength aperture,a topology optimization method for designing metamaterials(MTM)microstructure was proposed in this study.The MTM was employed and inserted vertically in the aperture.The description function for the arbitrary shape of the aperture was established.The optimization model was founded to search the optimal MTM microstructure for maximum enhanced power transmission through the aperture at the demanded frequency.Several MTM microstructures for ET through the apertures with different shapes at the demanded frequency were designed as examples.The simulation and experimental results validate the feasibility of the method.The regularity of the optimal ET microstructures and their advantages over the existing configurations were discussed. 展开更多
关键词 METAMATERIAL enhanced transmission topology optimization arbitrary-shaped aperture
在线阅读 下载PDF
Topology optimization of on-chip integrated laser-driven particle accelerator
6
作者 Yang-Fan He Bin Sun +5 位作者 Ming-Jiang Ma Wei Li Qiang-You He Zhi-Hao Cui Shao-Yi Wang Zong-Qing Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第9期126-136,共11页
Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a die... Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a dielectric laser accelerator(DLA)made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level.To design DLA structures with a high acceleration gradient,we demonstrate topology optimization,which is a method used to optimize the material distribution in a specific area based on given load conditions,constraints,and performance indicators.To demonstrate the effectiveness of this approach,we propose two schemes and design several acceleration structures based on them.The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators,producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods.These results provide new physical approaches to explore ultrafast dynamics in matter,with important implications for future laser particle accelerators based on photonic chips. 展开更多
关键词 Laser-driven particle acceleration Dielectric grating accelerator Inverse Smith-Purcell effect topology optimization
在线阅读 下载PDF
Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method
7
作者 Hui Pan Feng Jia +3 位作者 Zhen-Yu Liu Maxim Zaitsev Juergen Hennig Jan G Korvink 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期91-100,共10页
A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy.Unlike the popular stream f... A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy.Unlike the popular stream function method,the proposed method has design variables that are the distribution of conductive material.A voltage-driven transverse gradient coil is proposed to be used as micro-scale magnetic resonance imaging(MRI)gradient coils,thus avoiding introducing a coil-winding pattern and simplifying the coil configuration.The proposed method avoids post-processing errors that occur when the continuous current density is approximated by discrete wires in the stream function approach.The feasibility and accuracy of the method are verified through designing the z-gradient and y-gradient coils on a cylindrical surface.Numerical design results show that the proposed method can provide a new coil layout in a compact design space. 展开更多
关键词 topology optimization method gradient coils solid isotropic material with penalization magnetic resonance imaging
在线阅读 下载PDF
Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization
8
作者 Yu Chen Wu-Hao Cao +4 位作者 Jia-Qi Li Ming-Zhe Zhang Xin-Yi Du Ding-Shan Gao Pei-Li Li 《Chinese Physics B》 2025年第4期432-440,共9页
A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering a... A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar. 展开更多
关键词 coding metasurfaces polarization-independent TERAHERTZ topology optimization
在线阅读 下载PDF
Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
9
作者 Ya-Jie Zhang Chao-Long Li +3 位作者 Jia-Qi Luan Ming Zhao Ding-Shan Gao Pei-Li Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期287-294,共8页
Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the m... Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields. 展开更多
关键词 metasurface polarization conversion topology optimization ULTRA-BROADBAND
在线阅读 下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
10
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure Genetic algorithm SURVIVABILITY VULNERABILITY
在线阅读 下载PDF
Optimization Design of Hydraulic Valve Block and Its Internal Flow Channel Based on Additive Manufacturing 被引量:5
11
作者 LI Dongfei DAI Ning WANG Hongtao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期373-382,共10页
Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity str... Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity structure of process holes in its internal flow channel,seriously affecting the flow performance of oil.Based on the new design space provided by additive manufacturing technology,the internal hydraulic flow channel of valve block is optimized by using B-spline curve.Computational fluid dynamics analysis is carried out on the hydraulic flow channel to determine the optimal flow channel structure with the smallest pressure drop.The weight reduction of hydraulic valve block is carried out through topology optimization.According to the results of topology optimization,using the method of selective laser melting(SLM),the printing of the hydraulic valve block is completed.The optimized hydraulic channel reduces the pressure loss by 31.4%compared with the traditional hydraulic channel.Compared with the traditional valve block,the hydraulic valve block manufactured by SLM with topology optimization reduces the weight by 33.9%.Therefore,the proposed flow channel optimization and valve block lightweight method provide a new reference for the performance improvement of the internal flow channel of hydraulic valve block and the overall lightweight design of valve block. 展开更多
关键词 flow channel optimization B⁃spline curve pressure loss topology optimization additive manufacturing
在线阅读 下载PDF
Topological Optimization Method for Aeronautical Thin-Walled Component Fixture Locating Layout 被引量:2
12
作者 Yang Yuan Wang Zhongqi +1 位作者 Yang Bo Kang Yonggang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第4期405-412,共8页
Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout... Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model. 展开更多
关键词 aeronautical thin-walled component fixture locating layout topological optimization variable-density method
在线阅读 下载PDF
Light-Propagation Characteristics of Photonic Crystal Waveguide Based on SOI Materials at Different Polarized States
13
作者 王春霞 许兴胜 +4 位作者 李芳 杜伟 熊贵光 刘育梁 陈弘达 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第9期2472-2475,共4页
Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present... Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an emcient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method. 展开更多
关键词 topology optimization SLAB BENDS
在线阅读 下载PDF
ICM Method Combined with Meshfree Approximation for Continuum Structure
14
作者 龙凯 左正兴 +1 位作者 肖涛 Rehan H.Zuberi 《Journal of Beijing Institute of Technology》 EI CAS 2010年第3期279-285,共7页
The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ... The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods. 展开更多
关键词 topology optimization independent continuous mapping method continuum structure meshfree method moving least square approximation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部