The luminance in the road tunnel threshold zone attracts broad attention due to its enormous energy consumption and direct influence on tunnel transportation security.Current lighting design methods in threshold zones...The luminance in the road tunnel threshold zone attracts broad attention due to its enormous energy consumption and direct influence on tunnel transportation security.Current lighting design methods in threshold zones mostly adopt the reduction coefficient method.However,the determination of reduction coefficient k simply considers tunnel design speed and flow rate,while excluding outside tunnel luminance and threshold zone color temperature and luminance,which have a major impact on driver visual adaptation.Existing problems in the determination of k value are analyzed;a visual performance experiment is utilized;and the reaction time of drivers in changeable outside tunnel luminance and threshold zone color temperature and luminance conditions is obtained;thus,the equations concerning reduction coefficient variation law are derived.In the end,a comparative analysis is made of the k values of the reduction coefficient stipulated by various norms under different color temperature conditions.展开更多
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
基金Project(51278507)supported by the National Natural Science Foundation of ChinaProject(cstc2017jcyjAX0346)supported by Chongqing Association for Science and Technology,China
文摘The luminance in the road tunnel threshold zone attracts broad attention due to its enormous energy consumption and direct influence on tunnel transportation security.Current lighting design methods in threshold zones mostly adopt the reduction coefficient method.However,the determination of reduction coefficient k simply considers tunnel design speed and flow rate,while excluding outside tunnel luminance and threshold zone color temperature and luminance,which have a major impact on driver visual adaptation.Existing problems in the determination of k value are analyzed;a visual performance experiment is utilized;and the reaction time of drivers in changeable outside tunnel luminance and threshold zone color temperature and luminance conditions is obtained;thus,the equations concerning reduction coefficient variation law are derived.In the end,a comparative analysis is made of the k values of the reduction coefficient stipulated by various norms under different color temperature conditions.
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.