During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents ...During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents a method for evalu-ating the electrical performance of the radome when subjected to thermo-mechanical-electrical(TME)coupling.The method involves establishing a TME coupling model(TME-CM)based on the TME sharing mesh model(TME-SMM)generated by the tetrahedral mesh partitioning of the radome structure.The effects of dielectric temperature drift and structural deformation on the radome’s electrical performance are also considered.Firstly,the temperature field of the radome is obtained by tran-sient thermal analysis while the deformation field of the radome is obtained by static analysis.Subsequently,the dielectric varia-tion and structural deformation of the radome are accurately incorporated into the electrical simulation model based on the TME-SMM.The three-dimensional(3D)ray tracing method with the aperture integration technique is used to calculate the radome’s electrical performance.A representative example is provided to illustrate the superiority and necessity of the pro-posed method.This is achieved by calculating and analyzing the changes in the radome’s electrical performance over time dur-ing high-speed flight.展开更多
For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of t...For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.展开更多
To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings rev...To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability.展开更多
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa...In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields.展开更多
Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analy...Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method.展开更多
The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological ...The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological noise,there is still a significant gap between its actual precision and theoretical precision.This study identifies the key factor limiting the precision of the SERF gyroscope as coupling noise.By optimizing the detection loop structure,a distinction between the dual-axis signals'response to optical and magnetic fields was achieved-where the optical errors responded similarly,while the response to magnetic noise was opposite.Based on the differences in the optical-magnetic response of the dual-axis signals,empirical mode decomposition was used to decompose the dual-axis gyroscope signals into multiple intrinsic mode functions,and Allan deviation analysis was applied to analyze the noise characteristics of the intrinsic mode functions over various periods.This study successfully reveals that optical errors caused by thermal-optical coupling and long-period magnetic noise induced by thermal-magnetic coupling are the dominant factors limiting the long-term stability of the SERF gyroscope.Based on these analyses,the study concludes that to achieve strategic-grade precision for the SERF gyroscope,it is essential to effectively address the noise issues caused by multi-physical field couplings.展开更多
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
Explosion-electricity coupling(EEC) is a technical method to induce electric energy into the plasma material produced by explosion to improve the output of explosion.Exploding foil initiator(EFI) which could produce p...Explosion-electricity coupling(EEC) is a technical method to induce electric energy into the plasma material produced by explosion to improve the output of explosion.Exploding foil initiator(EFI) which could produce plasma during electric explosion can serve as a good carrier for studying the EEC.To investigate the enhancement ability and mechanism of EEC in EFI ignition performance,a kind of EFI chips which could realize the EEC effect was designed and fabricated to observe the characteristics of current and voltage,flyer and plasma temperature during Boron Potassium Nitrate(BPN) ignition of the EFI.It was found that the EEC could enhance EFI ignition in terms of energy utilization,ignition contact surface,and high-temperature sustainability of plasma:firstly,the EEC prolonged the late time discharge(LTD) phase of the electric explosion,making the energy of capacitor effectively utilized;secondly,the EEC could create a larger area of ignition contact surface;last of all,the EEC effect enhanced its hightemperature sustainability by sustaining continuous energy input to plasma.It also was found that the ignition voltage of BPN could be reduced by nearly 600 V under the condition of 0.4 μF capacitance.The research has successfully combined EEC with EFI,revealing the behavioral characteristics of EEC and demonstrating its effective enhancement of EFI ignition.It introduces a new approach to improving EFI output,which is conducive to low-energy ignition of EFI,and expected to take the ignition technology of EFI to a new level.展开更多
The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip...The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.展开更多
In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation ...In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation for the KdV equation to such coupled KdV system.Then from a trivial seed solution,we construct soliton solutions.We also give a nonlinear superposition formula,which allows us to generate multi-soliton solutions.展开更多
Uplift\|related geological and geophysical data available from regional geological mapping , detailed structural, tectonic, granitic, volcanic, metamorphic , geochronological studies, deep seismic reflection, wide\|an...Uplift\|related geological and geophysical data available from regional geological mapping , detailed structural, tectonic, granitic, volcanic, metamorphic , geochronological studies, deep seismic reflection, wide\|angle seismic experiment, seismic tomography, broadband seismic network, and magnetotelluric sounding of key areas of the Qinghai—Tibet plateau are radically different from models of plate subduction or collision. Key geological features include: (1) obvio us time difference between plate collision and uplift of the plateau; (2) developments of intracrustal low\|velocity layers , low resistivity layers and discontinuous subhorizontal reflectors; (3) similar results between the rate and time of uplift of the Qinghai\|Tibet plateau and the time and rate of subsidence of its surrounding basins; (4) subhorizontal detachments and metamorphic core complexes occurred in Himalayan and Longmenshan; (5) weak deformation of late Cenozoic sediments and development of major steeply to gently dipping normal faults in the central part of the plateau; (6) discovery of high pressure and ultrahigh pressure metamorphic rocks in Nanbajiawa; (7) young volcanic rocks distributed from the northern plateau to the southern plateau; (8) nearly concordant processes among thrusting , mountain building, horizontal extension and intrusion of leucogranite in Himalayans.展开更多
The paper probes into a probable condition that causes temper mill chatter from aspect of electromechanical coupling of complex electromechanical system, and mainly studies the effect of temper mill electrical driving...The paper probes into a probable condition that causes temper mill chatter from aspect of electromechanical coupling of complex electromechanical system, and mainly studies the effect of temper mill electrical driving system harmonic current on the main motion of temper mill set. Aiming at the electrical driving system of CM04 temper mill, the effect of harmonic current is analyzed and evaluated according to different load. Combining the features of CM04 temper mill′s structure and its working state, the paper discusses in every detail how the harmonic current in main circuit, which can be regarded as a disturbance via feedback control circuit , influences main motion of temper mill set.展开更多
Based on the model which couples the projectile and gun barrel during an interior ballistic cycle,the uncertainty propagation analysis of the model is presented caused by the uncertainty of the input parameters.The Bo...Based on the model which couples the projectile and gun barrel during an interior ballistic cycle,the uncertainty propagation analysis of the model is presented caused by the uncertainty of the input parameters.The Bootstrap method is employed to calculate the statistical moments(i.e.the mean,variance,skewness coefficient and kurtosis coefficient)of the parameters of the projectile.Meanwhile,the maximum entropy method is used to estimate the probability density function(PDF)and the cumulative density function(CDF),the interval of the parameters of the projectile are also given.Moreover,the results obtained are compared to the results calculated by Monte Carlo(MC)method to verify the effectiveness of the presented method.Finally,the rule and the uncertainty propagation model of the projectile-barrel coupling system are given with the variation of the uncertainties of the input parameters.展开更多
Taking the Kunlunshan Tunnel on Qinghai Tibet Railway as an engineering background, the curved wall-inverted arch lining of the tunnel was simplified into the straight wall-umbrella arch one, and the fractured rock ma...Taking the Kunlunshan Tunnel on Qinghai Tibet Railway as an engineering background, the curved wall-inverted arch lining of the tunnel was simplified into the straight wall-umbrella arch one, and the fractured rock mass with developed joints was treated as a discrete medium in the calculation. Using the UDEC code, the numerical simulations for thermo-mechanical coupling processes in the surrounding rock mass-supporting system were carried out aiming at the conditions of mean temperature, extreme highest temperature and extreme lowest temperature in one year. The distributions and changes of stresses, displacements, plastic zones, temperatures in the rock mass of near field, as well as the loading states in the model-building concrete and bolting were investigated and compared for these three computation cases. The results show that compared with the case of mean temperature, the ranges, where the temperatures of surrounding rock mass change obviously, are 6.0 m and 6.5 m, respectively, for the cases of extreme highest temperature and extreme lowest temperature; the displacements of tunnel are raised by 3.2 9.3 and 5.7 12.7 times, and the thicknesses of plastic zones reach 1.5 2.5 m and 2.0 4.5 m for case 2 and 3, respectively; the extreme temperatures of air have strong effects on the stress, deformation and failure states of supporting structure of tunnel in cold region, and the influence degree of extreme lowest temperature is the highest.展开更多
The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of be...The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism.展开更多
In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical st...In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical stress fields and fatigue crack mechanics.Elastic-plastic material data of modified AISI 4340 at temperatures ranging from 25 to 1200℃and at strain rates of 4,16,32 and 48 s^(-1) was acquired from high-temperature compression tests.This was used as material property data in the simulation model.The boundary conditions applied are kept similar to the working gun barrel during continuous firing.A methodology has been provided to define thermo-mechanically active surface-to-surface type interface between the crack faces for a better approximation of stresses at the crack tip.Comparison of results from non-autofrettaged and autofrettaged simulation models provide useful information about the evolution of strains and stresses in the barrel at different points under combined thermo-mechanical loading cycles in both cases.The effect of thermal fatigue under already induced compressive yield due to autofrettage and the progressive degradation of the accumulated stresses due to thermo-mechanical cyclic loads on the internal surface of the gun barrel(mimicking the continuous firing scenario)has been analyzed.Comparison between energy release rate at tips of varying crack lengths due to cyclic thermo-mechanical loading in the non-autofrettaged and autofrettaged gun has been carried out.展开更多
Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertili...Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertilizer application,and vice versa;pods per plant,seeds per pod.and 100-seed weight had positive correlations with soybean yield,but the degrees of correlations of different treatments were various;LAI and dry matter accumulation could be significantly increased when watered and applied fertilizer with different levels,but high fertilizer application treatment didn't obtain the highest yield;watering could increase the absolute absorption amount of N,P,K in seeds,but the accumulation rates were various.展开更多
To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulate...To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.展开更多
The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron m...The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results confirm that the strength of TC4 alloy can be improved obviously by LTTMT processing, which combines strain strengthening with aging strengthening. The effect of LTTMT on the alloy depends on the microstructure of the refined and dispersed a+fl phase on the basis of high dislocation density by pre-deformation below recrystallization temperature. The tensile strength decreases with the increase of pre-deformation reduction. The optimal processing parameters of LTTMT for TC4 alloy are as follows: solution treatment at 900 ℃ for 15 min, pre-deformation in the range of 600-700 ℃ with a reduction of 35%, finally aging at 540 ℃ for 4 h followed by air-cooling.展开更多
A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific o...A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific objective of the mission is to focus on the outflow ions from the ionosphere to the magnetosphere.The constellation is planning to be composed of four small satellites;each small satellite has its own orbit and crosses the polar region at nearly the same time but at different altitude.The payloads onboard include particle detectors,electromagnetic payloads,auroral imagers and neutral atom imagers.With these payloads,the mission will be able to investigate acceleration mechanism of the upflow ions at different altitudes.Currently the orbits have been determined and prototypes of some have also been completed.Competition for next phase selection is scheduled in late 2015.展开更多
文摘During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents a method for evalu-ating the electrical performance of the radome when subjected to thermo-mechanical-electrical(TME)coupling.The method involves establishing a TME coupling model(TME-CM)based on the TME sharing mesh model(TME-SMM)generated by the tetrahedral mesh partitioning of the radome structure.The effects of dielectric temperature drift and structural deformation on the radome’s electrical performance are also considered.Firstly,the temperature field of the radome is obtained by tran-sient thermal analysis while the deformation field of the radome is obtained by static analysis.Subsequently,the dielectric varia-tion and structural deformation of the radome are accurately incorporated into the electrical simulation model based on the TME-SMM.The three-dimensional(3D)ray tracing method with the aperture integration technique is used to calculate the radome’s electrical performance.A representative example is provided to illustrate the superiority and necessity of the pro-posed method.This is achieved by calculating and analyzing the changes in the radome’s electrical performance over time dur-ing high-speed flight.
文摘For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.
基金Project(IMRI23005)supported by Ordos Science and Technology Bureau,ChinaProjects(52174096,52304110)supported by the National Natural Science Foundation of China。
文摘To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability.
基金Projects(12072102,12102129)supported by the National Natural Science Foundation of ChinaProject(DM2022B01)supported by the Key Laboratory of Safe Mining of Deep Metal Mines,Ministry of Education,ChinaProject(JZ-008)supported by the Six Talent Peaks Project in Jiangsu Province,China。
文摘In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields.
基金supported by the National Natural Science Foundation of China(72271242)Hunan Provincial Natural Science Foundation of China for Excellent Young Scholars(2022JJ20046).
文摘Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method.
基金supported by Hefei National Laboratory,Innovation Program for Quantum Science and Technology(2021ZD0300400/2021ZD0300402)the Beijing Natural Science Foundation(3252013)the China Postdoctoral Science Foundation(2024T171116).
文摘The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological noise,there is still a significant gap between its actual precision and theoretical precision.This study identifies the key factor limiting the precision of the SERF gyroscope as coupling noise.By optimizing the detection loop structure,a distinction between the dual-axis signals'response to optical and magnetic fields was achieved-where the optical errors responded similarly,while the response to magnetic noise was opposite.Based on the differences in the optical-magnetic response of the dual-axis signals,empirical mode decomposition was used to decompose the dual-axis gyroscope signals into multiple intrinsic mode functions,and Allan deviation analysis was applied to analyze the noise characteristics of the intrinsic mode functions over various periods.This study successfully reveals that optical errors caused by thermal-optical coupling and long-period magnetic noise induced by thermal-magnetic coupling are the dominant factors limiting the long-term stability of the SERF gyroscope.Based on these analyses,the study concludes that to achieve strategic-grade precision for the SERF gyroscope,it is essential to effectively address the noise issues caused by multi-physical field couplings.
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
基金the Science and Technology on Applied Physical Chemistry Laboratory, China (Grant No.6142602220101) to provide fund for conducting experiments。
文摘Explosion-electricity coupling(EEC) is a technical method to induce electric energy into the plasma material produced by explosion to improve the output of explosion.Exploding foil initiator(EFI) which could produce plasma during electric explosion can serve as a good carrier for studying the EEC.To investigate the enhancement ability and mechanism of EEC in EFI ignition performance,a kind of EFI chips which could realize the EEC effect was designed and fabricated to observe the characteristics of current and voltage,flyer and plasma temperature during Boron Potassium Nitrate(BPN) ignition of the EFI.It was found that the EEC could enhance EFI ignition in terms of energy utilization,ignition contact surface,and high-temperature sustainability of plasma:firstly,the EEC prolonged the late time discharge(LTD) phase of the electric explosion,making the energy of capacitor effectively utilized;secondly,the EEC could create a larger area of ignition contact surface;last of all,the EEC effect enhanced its hightemperature sustainability by sustaining continuous energy input to plasma.It also was found that the ignition voltage of BPN could be reduced by nearly 600 V under the condition of 0.4 μF capacitance.The research has successfully combined EEC with EFI,revealing the behavioral characteristics of EEC and demonstrating its effective enhancement of EFI ignition.It introduces a new approach to improving EFI output,which is conducive to low-energy ignition of EFI,and expected to take the ignition technology of EFI to a new level.
基金funded by the National Natural Science Foundation of China(Grant No.12272217)。
文摘The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.
基金Supported by the Jiangsu Higher School Undergraduate Innovation and Entrepreneurship Training Program(202311117078Y)。
文摘In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation for the KdV equation to such coupled KdV system.Then from a trivial seed solution,we construct soliton solutions.We also give a nonlinear superposition formula,which allows us to generate multi-soliton solutions.
文摘Uplift\|related geological and geophysical data available from regional geological mapping , detailed structural, tectonic, granitic, volcanic, metamorphic , geochronological studies, deep seismic reflection, wide\|angle seismic experiment, seismic tomography, broadband seismic network, and magnetotelluric sounding of key areas of the Qinghai—Tibet plateau are radically different from models of plate subduction or collision. Key geological features include: (1) obvio us time difference between plate collision and uplift of the plateau; (2) developments of intracrustal low\|velocity layers , low resistivity layers and discontinuous subhorizontal reflectors; (3) similar results between the rate and time of uplift of the Qinghai\|Tibet plateau and the time and rate of subsidence of its surrounding basins; (4) subhorizontal detachments and metamorphic core complexes occurred in Himalayan and Longmenshan; (5) weak deformation of late Cenozoic sediments and development of major steeply to gently dipping normal faults in the central part of the plateau; (6) discovery of high pressure and ultrahigh pressure metamorphic rocks in Nanbajiawa; (7) young volcanic rocks distributed from the northern plateau to the southern plateau; (8) nearly concordant processes among thrusting , mountain building, horizontal extension and intrusion of leucogranite in Himalayans.
文摘The paper probes into a probable condition that causes temper mill chatter from aspect of electromechanical coupling of complex electromechanical system, and mainly studies the effect of temper mill electrical driving system harmonic current on the main motion of temper mill set. Aiming at the electrical driving system of CM04 temper mill, the effect of harmonic current is analyzed and evaluated according to different load. Combining the features of CM04 temper mill′s structure and its working state, the paper discusses in every detail how the harmonic current in main circuit, which can be regarded as a disturbance via feedback control circuit , influences main motion of temper mill set.
文摘Based on the model which couples the projectile and gun barrel during an interior ballistic cycle,the uncertainty propagation analysis of the model is presented caused by the uncertainty of the input parameters.The Bootstrap method is employed to calculate the statistical moments(i.e.the mean,variance,skewness coefficient and kurtosis coefficient)of the parameters of the projectile.Meanwhile,the maximum entropy method is used to estimate the probability density function(PDF)and the cumulative density function(CDF),the interval of the parameters of the projectile are also given.Moreover,the results obtained are compared to the results calculated by Monte Carlo(MC)method to verify the effectiveness of the presented method.Finally,the rule and the uncertainty propagation model of the projectile-barrel coupling system are given with the variation of the uncertainties of the input parameters.
基金Project(2010CB732101) supported by the National Basic Research Program of ChinaProjects(51079145,51379201) supported by the National Natural Science Foundation of China
文摘Taking the Kunlunshan Tunnel on Qinghai Tibet Railway as an engineering background, the curved wall-inverted arch lining of the tunnel was simplified into the straight wall-umbrella arch one, and the fractured rock mass with developed joints was treated as a discrete medium in the calculation. Using the UDEC code, the numerical simulations for thermo-mechanical coupling processes in the surrounding rock mass-supporting system were carried out aiming at the conditions of mean temperature, extreme highest temperature and extreme lowest temperature in one year. The distributions and changes of stresses, displacements, plastic zones, temperatures in the rock mass of near field, as well as the loading states in the model-building concrete and bolting were investigated and compared for these three computation cases. The results show that compared with the case of mean temperature, the ranges, where the temperatures of surrounding rock mass change obviously, are 6.0 m and 6.5 m, respectively, for the cases of extreme highest temperature and extreme lowest temperature; the displacements of tunnel are raised by 3.2 9.3 and 5.7 12.7 times, and the thicknesses of plastic zones reach 1.5 2.5 m and 2.0 4.5 m for case 2 and 3, respectively; the extreme temperatures of air have strong effects on the stress, deformation and failure states of supporting structure of tunnel in cold region, and the influence degree of extreme lowest temperature is the highest.
基金Projects(2014QNB18,2015XKMS022)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(51475456,51575511)supported by the National Natural Science Foundation of China+1 种基金Project supported by the Priority Academic Programme Development of Jiangsu Higher Education InstitutionsProject supported by the Visiting Scholar Foundation of China Scholarship Council
文摘The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism.
基金the DAAD Faculty Development for Ph.D.Candidates(Balochistan)2016(57245990)-HRDI-UESTP’s/UET’s funding scheme in cooperation with the Higher Education Commission of Pakistan(HEC)for sponsoring the stay at IMF TU Freiberg,Germany.
文摘In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical stress fields and fatigue crack mechanics.Elastic-plastic material data of modified AISI 4340 at temperatures ranging from 25 to 1200℃and at strain rates of 4,16,32 and 48 s^(-1) was acquired from high-temperature compression tests.This was used as material property data in the simulation model.The boundary conditions applied are kept similar to the working gun barrel during continuous firing.A methodology has been provided to define thermo-mechanically active surface-to-surface type interface between the crack faces for a better approximation of stresses at the crack tip.Comparison of results from non-autofrettaged and autofrettaged simulation models provide useful information about the evolution of strains and stresses in the barrel at different points under combined thermo-mechanical loading cycles in both cases.The effect of thermal fatigue under already induced compressive yield due to autofrettage and the progressive degradation of the accumulated stresses due to thermo-mechanical cyclic loads on the internal surface of the gun barrel(mimicking the continuous firing scenario)has been analyzed.Comparison between energy release rate at tips of varying crack lengths due to cyclic thermo-mechanical loading in the non-autofrettaged and autofrettaged gun has been carried out.
文摘Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertilizer application,and vice versa;pods per plant,seeds per pod.and 100-seed weight had positive correlations with soybean yield,but the degrees of correlations of different treatments were various;LAI and dry matter accumulation could be significantly increased when watered and applied fertilizer with different levels,but high fertilizer application treatment didn't obtain the highest yield;watering could increase the absolute absorption amount of N,P,K in seeds,but the accumulation rates were various.
基金Project(51275211)supported by the National Natural Science Foundation of ChinaProject(11KJA580001)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(CXZZ12_0665)supported by the Postgraduate Innovation Natural Science Foundation of Jiangsu Province,China
文摘To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.
基金Project(2008WK2005) supported by the Science and Technology Plan of Hunan Province, China
文摘The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results confirm that the strength of TC4 alloy can be improved obviously by LTTMT processing, which combines strain strengthening with aging strengthening. The effect of LTTMT on the alloy depends on the microstructure of the refined and dispersed a+fl phase on the basis of high dislocation density by pre-deformation below recrystallization temperature. The tensile strength decreases with the increase of pre-deformation reduction. The optimal processing parameters of LTTMT for TC4 alloy are as follows: solution treatment at 900 ℃ for 15 min, pre-deformation in the range of 600-700 ℃ with a reduction of 35%, finally aging at 540 ℃ for 4 h followed by air-cooling.
基金Supported by the Strategic Priority Research Program on Space Science(XDA04060201)of Chinese Academy of Sciencesthe Chinese Academy of Sciences"Hundred Talented Program"(Y32135A47S)+2 种基金the Chinese National Science Foundation(411774149)the Specialized Research Fund for State Key laboratory of Chinathe Chinese Academy of Sciences Visiting Fellowship for Researchers from Developing Countries
文摘A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific objective of the mission is to focus on the outflow ions from the ionosphere to the magnetosphere.The constellation is planning to be composed of four small satellites;each small satellite has its own orbit and crosses the polar region at nearly the same time but at different altitude.The payloads onboard include particle detectors,electromagnetic payloads,auroral imagers and neutral atom imagers.With these payloads,the mission will be able to investigate acceleration mechanism of the upflow ions at different altitudes.Currently the orbits have been determined and prototypes of some have also been completed.Competition for next phase selection is scheduled in late 2015.