Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their c...Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their conventional styles. Thermal insulation boards and wooden boards were added to the interior side of external walls of vernacular dwellings to form two layers of air cavities, so as to gain excellent thermal performance. The indoor temperature of such dwellings after reconstruction was apparently improved compared with the data before reconstruction both in winter and summer, which verified the feasibility and the effectiveness of the reconstruction technologies proposed.展开更多
Solar water heaters(SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is ...Solar water heaters(SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is unclear yet. In this study, we present a numerical evaluation on thermal performance of fa?ade-installed SWH under three typical obstructed scenarios, based on various levels of sunshine duration. This study is carried out for four locations with various latitudes across China. Thermal performance is measured by solar fraction for annual and monthly evaluation. The results show that the obstruction can seriously degrade annual solar fraction of SWH, even in the 4-hour sunshine duration scenario, for all the studied locations. Interestingly, only lengthening sunshine duration in the standard day(e.g., from 2 h to 4 h) may not result in increasing annual solar fraction markedly. In terms of the monthly performance, solar fraction in January and December decreases significantly, while from May to August it just declines slightly, except for Guangzhou having a swift reduction. This study can provide insights into the behavior and promote the appropriate application of SWH in urban areas.展开更多
Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of the...Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.展开更多
To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ...To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.展开更多
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr...Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.展开更多
A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the wails and other parameters in non-cooling and radiant cooling room were calculated by T...A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the wails and other parameters in non-cooling and radiant cooling room were calculated by TRNSYS. The comparative analysis of the characteristics of attenuation and delay proves that the operation of radiant cooling system increases the degree of temperature attenuation of the room and reduces the inner surface temperature of the wall significantly, but has little effect on the attenuation coefficient and delay time of wall heat transfer. The simulation results also show that the inner surface temperature of the walls in the radiant cooling room is much lower than that in non-cooling room in the day with the maximum cooling load, which reduces the indoor operation temperature largely, and improves the thermal comfort. Finally, according to the analysis of indoor temperature of the rooms with different operation schedules of cooling system, it can be derived that the indoor mean temperature changes with the working time of radiant cooling system, and the operation schedule can be adjusted in practice according to the actual indoor temperature to achieve the integration of energy efficiency and thermal comfort.展开更多
In the present study,hydraulic and thermal behavior of an automatic transmission nano-fluid(ATNF) inside a tube with a twisted tape has been investigated.The heat transfer improvement and pressure drop of transmission...In the present study,hydraulic and thermal behavior of an automatic transmission nano-fluid(ATNF) inside a tube with a twisted tape has been investigated.The heat transfer improvement and pressure drop of transmission oil for each of case of using twisted tape and nano-particles were also examined separately and compared with each other.The Cu O nano-particles were used to prepare the ATNF.The effects of different Reynolds numbers and different mass fractions of nano-particle were investigated.The results showed that applying nano-particles and twisted tape simultaneously increases both the pressure drop and Nusselt number,on average by about 53% and 76%,respectively.By using a parameter,namely thermal performance index η,the effect of increasing heat transfer and pressure drop was studied simultaneously.The heat transfer improvement predominates the pressure drop increment in all cases.It was observed that the highest thermal performance of 1.9 was obtained at Re=634 and Φ=2%.Furthermore,regarding the increment of the Nu number,it was shown that the use of twisted tapes individually could increase the average Nu number by 41%,while the max increment arising from individual use of 2% nano-particles is 13%,so using twisted tape is a more effective-technique for this case study.展开更多
In the present study, thermal hazards of TNT and DNAN used as the molten binder in TKX-50-based meltcast explosives were comparatively studied through accelerating rate calorimeter(ARC) and Cook-off experiments. Two k...In the present study, thermal hazards of TNT and DNAN used as the molten binder in TKX-50-based meltcast explosives were comparatively studied through accelerating rate calorimeter(ARC) and Cook-off experiments. Two kinds of ARC operation modes were performed to investigate the thermal safety performance under adiabatic conditions(HWS mode) and constant heating(CHR mode). The obtained results demonstrated that at both heating modes, DNAN/TKX-50 outperformed TNT/TKX-50 from the thermal safety point of view. However, the sensitivity to heat of the samples was reverse because of the different heating modes. In addition, the results of thermal hazard assessment obtained from the cookoff experiment complied with ARC analysis which indicated the molten binder TNT replaced by DNAN would reduce the hazard of the TKX-50 melt cast explosive. Furthermore, the results of cook-off experiments also showed that DNAN/TKX-50 outperformed TNT/TKX-50 from the aspect of thermal stability, which was consistent with the result of CHR mode because of the similar heating process.展开更多
An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside di...An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.展开更多
Nanotechnology is widely used in heat transfer devices to improve thermal performance.Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability.In the present...Nanotechnology is widely used in heat transfer devices to improve thermal performance.Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability.In the present article,a comprehensive literature review is performed on the nanofluids’ applications in heat pipes.Based on reviewed studies,nanofluids have a high capacity to boost the thermal behavior of various types of heat pipes such as conventional heat pipes,pulsating heat pipes,and thermosyphons.Besides,it is observed that there must be a selected amount of concentration for the high-performance utilization of nanoparticles;high concentration of nanoparticles causes a higher thermal resistance which is mainly attributed to increment in the dynamic viscosity and the higher possibility of particles’ agglomeration.Enhancement in heat transfer performance is the result of increasing in nucleation sites and the intrinsically greater nanofluids’ thermal conductivity.展开更多
To explore the energy saving effect of building envelope, the experiments were carried out through a comparison of basic cubicle in summer. Experiments show that if energy efficiency measures are applied only in the e...To explore the energy saving effect of building envelope, the experiments were carried out through a comparison of basic cubicle in summer. Experiments show that if energy efficiency measures are applied only in the external walls and windows, the energy saving cubicles have an average energy efficiency ratio of 27.75% and 27.05% when the air change rates are 1.1 and 1.4 h-1 in summer, with both values being over the standard target value by 25%. And the indoor air temperature of the energy saving cubicle is below that of the basic cubicle. The daily mean temperature difference between the interior surface of insulation wall and no insulation reaches 1.47℃, and the mean temperature difference is up to 8.52℃ between the interior surface and exterior surface of insulating glass and single glass. The two cubicles were simulated for energy consumption using VisualDOE4.0 software under real weather conditions in summer. The results show that the mean deviation is 10.02% between experimental and simulated energy efficiency ratio. The correctness and validity of simulation results of the VisualDOE4.0 software are proved.展开更多
In present work,a helical double tube heat exchanger is proposed in which an advanced turbulator with blades,semi-conical part,and two holes is inserted in inner section.Two geometrical parameters,including angle of t...In present work,a helical double tube heat exchanger is proposed in which an advanced turbulator with blades,semi-conical part,and two holes is inserted in inner section.Two geometrical parameters,including angle of turbulator’s blades(θ) and number of turbulator’s blades(N),are considered.Results indicated that firstly,the best thermal stratification is achieved at θ=180°.Furthermore,at the lowest studied mass flow rate(m = 8 × 10^(-3) kg/s),heat transfer coefficient of turbulator with blade angle of 180° is 130.77%,25%,and 36.36% higher than cases including without turbulator,with turbulator with blade angle of θ =240°,and θ =360°,respectively.Moreover,case with N=12 showed the highest overall performance.At the highest studied mass flow rate(m = 5.842 × 10^(-2) kg/s),heat transfer coefficient for case with N=12 is up to 54.76%,27.45%,and 6.56% higher than cases including without turbulator,with turbulator with N=6,and with turbulator with N=9,respectively.展开更多
基金Project(51308548)supported by the National Natural Science Foundation of ChinaProject(2014M552155)supported by China Postdoctoral Science FoundationProject(2013RS4054)supported by the Science and Technology Fund of Hunan Province,China
文摘Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their conventional styles. Thermal insulation boards and wooden boards were added to the interior side of external walls of vernacular dwellings to form two layers of air cavities, so as to gain excellent thermal performance. The indoor temperature of such dwellings after reconstruction was apparently improved compared with the data before reconstruction both in winter and summer, which verified the feasibility and the effectiveness of the reconstruction technologies proposed.
基金Projects(2017JJ3517,2017JJ3090)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018NK2066)supported by the Key Research and Development Program of Hunan Province,ChinaProject(QJ2017007B)supported by the Youth Scientific Research Foundation of Central South University of Forestry and Technology,China。
文摘Solar water heaters(SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is unclear yet. In this study, we present a numerical evaluation on thermal performance of fa?ade-installed SWH under three typical obstructed scenarios, based on various levels of sunshine duration. This study is carried out for four locations with various latitudes across China. Thermal performance is measured by solar fraction for annual and monthly evaluation. The results show that the obstruction can seriously degrade annual solar fraction of SWH, even in the 4-hour sunshine duration scenario, for all the studied locations. Interestingly, only lengthening sunshine duration in the standard day(e.g., from 2 h to 4 h) may not result in increasing annual solar fraction markedly. In terms of the monthly performance, solar fraction in January and December decreases significantly, while from May to August it just declines slightly, except for Guangzhou having a swift reduction. This study can provide insights into the behavior and promote the appropriate application of SWH in urban areas.
文摘Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.
基金National Natural Science Foundation of China(No.22275150)。
文摘To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.
基金supported by the National Natural Science Foundation of China (Grant Nos. 22475179 and 22275173)。
文摘Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.
基金Project(2010DFA72740) supported by the International Science & Technology Cooperation Program of China
文摘A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the wails and other parameters in non-cooling and radiant cooling room were calculated by TRNSYS. The comparative analysis of the characteristics of attenuation and delay proves that the operation of radiant cooling system increases the degree of temperature attenuation of the room and reduces the inner surface temperature of the wall significantly, but has little effect on the attenuation coefficient and delay time of wall heat transfer. The simulation results also show that the inner surface temperature of the walls in the radiant cooling room is much lower than that in non-cooling room in the day with the maximum cooling load, which reduces the indoor operation temperature largely, and improves the thermal comfort. Finally, according to the analysis of indoor temperature of the rooms with different operation schedules of cooling system, it can be derived that the indoor mean temperature changes with the working time of radiant cooling system, and the operation schedule can be adjusted in practice according to the actual indoor temperature to achieve the integration of energy efficiency and thermal comfort.
文摘In the present study,hydraulic and thermal behavior of an automatic transmission nano-fluid(ATNF) inside a tube with a twisted tape has been investigated.The heat transfer improvement and pressure drop of transmission oil for each of case of using twisted tape and nano-particles were also examined separately and compared with each other.The Cu O nano-particles were used to prepare the ATNF.The effects of different Reynolds numbers and different mass fractions of nano-particle were investigated.The results showed that applying nano-particles and twisted tape simultaneously increases both the pressure drop and Nusselt number,on average by about 53% and 76%,respectively.By using a parameter,namely thermal performance index η,the effect of increasing heat transfer and pressure drop was studied simultaneously.The heat transfer improvement predominates the pressure drop increment in all cases.It was observed that the highest thermal performance of 1.9 was obtained at Re=634 and Φ=2%.Furthermore,regarding the increment of the Nu number,it was shown that the use of twisted tapes individually could increase the average Nu number by 41%,while the max increment arising from individual use of 2% nano-particles is 13%,so using twisted tape is a more effective-technique for this case study.
基金the National Defense Foundation of China (3090021322001, 3090020221912, 3090021211903.) for financial support of this work。
文摘In the present study, thermal hazards of TNT and DNAN used as the molten binder in TKX-50-based meltcast explosives were comparatively studied through accelerating rate calorimeter(ARC) and Cook-off experiments. Two kinds of ARC operation modes were performed to investigate the thermal safety performance under adiabatic conditions(HWS mode) and constant heating(CHR mode). The obtained results demonstrated that at both heating modes, DNAN/TKX-50 outperformed TNT/TKX-50 from the thermal safety point of view. However, the sensitivity to heat of the samples was reverse because of the different heating modes. In addition, the results of thermal hazard assessment obtained from the cookoff experiment complied with ARC analysis which indicated the molten binder TNT replaced by DNAN would reduce the hazard of the TKX-50 melt cast explosive. Furthermore, the results of cook-off experiments also showed that DNAN/TKX-50 outperformed TNT/TKX-50 from the aspect of thermal stability, which was consistent with the result of CHR mode because of the similar heating process.
基金Project(51178201) supported by the National Natural Science Foundation of China Project(2011CDB292) supported by the Natural Science Foundation of Hubei Province,China
文摘An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.
文摘Nanotechnology is widely used in heat transfer devices to improve thermal performance.Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability.In the present article,a comprehensive literature review is performed on the nanofluids’ applications in heat pipes.Based on reviewed studies,nanofluids have a high capacity to boost the thermal behavior of various types of heat pipes such as conventional heat pipes,pulsating heat pipes,and thermosyphons.Besides,it is observed that there must be a selected amount of concentration for the high-performance utilization of nanoparticles;high concentration of nanoparticles causes a higher thermal resistance which is mainly attributed to increment in the dynamic viscosity and the higher possibility of particles’ agglomeration.Enhancement in heat transfer performance is the result of increasing in nucleation sites and the intrinsically greater nanofluids’ thermal conductivity.
基金Project(2006BAJ01A05) supported by National Science and Technology Pillar Program during the 11th Five-year Plan Period of China
文摘To explore the energy saving effect of building envelope, the experiments were carried out through a comparison of basic cubicle in summer. Experiments show that if energy efficiency measures are applied only in the external walls and windows, the energy saving cubicles have an average energy efficiency ratio of 27.75% and 27.05% when the air change rates are 1.1 and 1.4 h-1 in summer, with both values being over the standard target value by 25%. And the indoor air temperature of the energy saving cubicle is below that of the basic cubicle. The daily mean temperature difference between the interior surface of insulation wall and no insulation reaches 1.47℃, and the mean temperature difference is up to 8.52℃ between the interior surface and exterior surface of insulating glass and single glass. The two cubicles were simulated for energy consumption using VisualDOE4.0 software under real weather conditions in summer. The results show that the mean deviation is 10.02% between experimental and simulated energy efficiency ratio. The correctness and validity of simulation results of the VisualDOE4.0 software are proved.
文摘In present work,a helical double tube heat exchanger is proposed in which an advanced turbulator with blades,semi-conical part,and two holes is inserted in inner section.Two geometrical parameters,including angle of turbulator’s blades(θ) and number of turbulator’s blades(N),are considered.Results indicated that firstly,the best thermal stratification is achieved at θ=180°.Furthermore,at the lowest studied mass flow rate(m = 8 × 10^(-3) kg/s),heat transfer coefficient of turbulator with blade angle of 180° is 130.77%,25%,and 36.36% higher than cases including without turbulator,with turbulator with blade angle of θ =240°,and θ =360°,respectively.Moreover,case with N=12 showed the highest overall performance.At the highest studied mass flow rate(m = 5.842 × 10^(-2) kg/s),heat transfer coefficient for case with N=12 is up to 54.76%,27.45%,and 6.56% higher than cases including without turbulator,with turbulator with N=6,and with turbulator with N=9,respectively.